Midterm

You have 90 minutes to finish the closed-book exam. You must show all of your work to get full credit. There are 6 problems with a total of 99 points (1 point for writing your name). Good luck!

Problem 1

Consider the national income determination model

$$
\begin{aligned}
& Y=C+I_{0}+G \\
& C=a+b\left(Y-T_{0}\right) \quad(a>0,0<b<1) \\
& G=g Y \quad(0<g<1)
\end{aligned}
$$

a) Identify the endogenous variables (3 points).
b) Write a system of equations in the form $A x=d$ (4 points).
c) Calculate the equilibrium values of Y, C and G, using Cramer's Rule (14 points).

Problem 2

Consider the following matrix

$$
A=\left[\begin{array}{ccc}
3 & -1 & 2 \\
1 & 2 & -2 \\
5 & -3 & 1
\end{array}\right]
$$

a) Reduce the matrix A to Row Echelon Form (12 points).
b) What is the rank of A (3 points)?
b) Is this matrix singular? Why(3 points)?

Problem 3

Consider the following matrix

$$
A=\left[\begin{array}{ccc}
1 & 5 & 2 \\
1 & 1 & 7 \\
0 & -2 & 4
\end{array}\right]
$$

a) Calculate the determinant of A (5 points).
b) Find the inverse of A (10 points).

Problem 4

Find the derivatives for the following functions
a) $\quad y(x)=(6 \sqrt{x}+2 x) \ln \left(x^{4}-\frac{1}{x}\right)(7$ points $)$.
b) $U(c)=\left[\alpha c^{\rho}+\beta(1-c)^{\rho}\right]^{\frac{1}{\rho}}(10$ points $)$.

Problem 5

Find the partial derivative $\frac{\partial z}{\partial x}$ and total derivative $\frac{d z}{d x}$ of the function $z(x, y)=\frac{3 e^{-2 x}+2 y}{x}$, where $y=-x^{2}+2 x+14$ (15 points).

Problem 6

Consider the system of equations

$$
\begin{aligned}
u & =y-z \\
v & =x+z^{2} \\
w & =x-y^{2}+2 y z
\end{aligned}
$$

Find the Jacobian (determinant of the Jacobian matrix) of the system (13 points).

