
ECON 186 Final Solutions

1)

L = −x2
1 − x1x2 − x2

2 + λ1 (−1− x1 + 2x2) + λ2 (2− 2x1 − x2)

The Kuhn-Tucker Conditions are:

Lλ1 : −1− x1 + 2x2 ≥ 0 λ1 ≥ 0 λ1Lλ1 = 0

Lλ2 : 2− 2x1 − x2 ≥ 0 λ2 ≥ 0 λ2Lλ2 = 0

Lx1 : −2x1 − x2 − λ1 − 2λ2 = 0

Lx2 : −2x2 − x1 + 2λ1 − λ2 = 0

Since x1, x2 > 0, we can just consider the 4 cases for λ1 and λ2.

Case 1: λ1 > 0, λ2 > 0

Then, −1 − x1 + 2x2 = 0 → x1 = −1 + 2x2 and 2 − 2x1 − x2 = 0. Combining them:
2 − 2 (−1 + 2x2) − x2 = 4 − 5x2 = 0 → x∗2 = 4

5 . Plugging back in, x∗1 = −1 + 8
5 = 3

5 .
Now, we have to make sure λ1 and λ2 are ≥ 0. Plugging in x∗1 and x∗2 in to Lx1 , we get
−6

5 −
4
5 − λ1 − 2λ2 = 0→ λ1 = −2− 2λ2. Plugging into Lx2 , −8

5 −
3
5 + 2 (−2− 2λ2)− λ2 =

−31
5 − 5λ2 = 0 → λ2 = −31

25 , which violates the condition that λ2 ≥ 0, so this cannot be a
solution.

Case 2: λ1 > 0, λ2 = 0

Substituting λ2 = 0 into Lx1 : −2x1 − x2 − λ1 = 0 → λ1 = −2x1 − x2. Substituting into
Lx2 : −2x2 − x1 + 2λ1 = 0→ λ1 = x1+2x2

2 . Then, λ1 = λ1 → −2x1 − x2 = x1+2x2
2 → −5

2x1 =
2x2 → x1 = −4

5x2. By complementary slackness, −1 − x1 + 2x2 = 0. Plugging into this
constraint, we get −1 + 4

5x2 + 2x2 = −1 + 14
5 x2 = 0→ x∗2 = 5

14 . Plugging back in, x∗1 = − 4
14

and λ∗1 = −2
(
− 4

15

)
− 5

14 = 3
14 . All the conditions are satisfied, so this is a candidate solution.

Case 3: λ1 = 0, λ2 > 0

Substituting λ1 = 0 into Lx1 : −2x1−x2−2λ2 = 0→ λ2 = −x1− x2
2 . Substituting into Lx2 :

−2x2 − x1 − λ2 = 0→ λ2 = −2x2 − x1. Then, λ2 = λ2 → −x1 − x2
2 = −2x2 − x1 → x∗2 = 0.

By complementary slackness, 2 − 2x1 − x2 = 0. Plugging into this constraint, we get
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2 − 2x1 = 0 → x∗1 = 1. Plugging back in, λ∗2 = −1 − 0 = −1. This violates the constraint
that λ1 ≥ 0, so this cannot be a solution.

Case 4: λ1 = 0, λ2 = 0

Plugging into Lx1 and Lx2 , we get that x∗1 = x∗2 = 0 which violates the constraint x1− 2x2 <
−1, so this cannot be a solution.

So the unique solution to the problem is where x∗1 = − 4
14 , x

∗
2 = 5

14 , λ
∗
1 = 3

14 , λ
∗
2 = 0.

Point distribution: 2 points for Lagrangian setup, 5 points for Kuhn-Tucker conditions, 2
points for each case

2)

a)

A =

 1 5 2
1 1 7
0 −3 4


METHOD 1
First, we form the augmented matrix 1 5 2

1 1 7
0 −3 4

∣∣∣∣∣∣∣
1 0 0
0 1 0
0 0 1


The first row operation is to get rid of the 1 in the second row of the first column by adding
-1 times the first row to the second row 1 5 2

0 −4 5
0 −3 4

∣∣∣∣∣∣∣
1 0 0
−1 1 0
0 0 1


Next, divide the second row by -4 1 5 2

0 1 −5
4

0 −3 4

∣∣∣∣∣∣∣
1 0 0
1
4 −

1
4 0

0 0 1


Get rid of the -3 in the third row by adding 3 times the second row to the third row 1 5 2

0 1 −5
4

0 0 1
4

∣∣∣∣∣∣∣
1 0 0
1
4 −

1
4 0

3
4 −

3
4 1


Multiply the third row by 4  1 5 2

0 1 −5
4

0 0 1

∣∣∣∣∣∣∣
1 0 0
1
4 −

1
4 0

3 −3 4
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Multiply the third row by 5/4 and add it to the second row 1 5 2
0 1 0
0 0 1

∣∣∣∣∣∣∣
1 0 0
4 −4 5
3 −3 4


Multiply the second row by -5 and add it to the first row 1 0 2

0 1 0
0 0 1

∣∣∣∣∣∣∣
−19 20 −25

4 −4 5
3 −3 4


Multiply the third row by -2 and add it to the first row 1 0 0

0 1 0
0 0 1

∣∣∣∣∣∣∣
−25 26 −33

4 −4 5
3 −3 4


So

A−1 =

 −25 26 −33
4 −4 5
3 −3 4


METHOD 2
Step 1: Construct a matrix of minors  25 4 −3

26 4 −3
33 5 −4


Step 2: Construct a matrix of cofactors 25 −4 −3

−26 4 3
33 −5 −4


Step 3: Find the adjugate by taking the transpose of the cofactor matrix 25 −26 33

−4 4 −5
−3 3 −4


Step 4: Find the determinant of the original matrix A∣∣∣∣∣∣∣

1 5 2
1 1 7
0 −3 4

∣∣∣∣∣∣∣ =
∣∣∣∣∣ 1 7
−3 4

∣∣∣∣∣− 5
∣∣∣∣∣ 1 7

0 4

∣∣∣∣∣+ 2
∣∣∣∣∣ 1 1

0 −3

∣∣∣∣∣ = 4 + 21− 5(4) + 2(−3) = −1

Step 5: Apply the formula

A−1 = 1
|A|

Adj A = −

 25 −26 33
−4 4 −5
−3 3 −4

 =

 −25 26 −33
4 −4 5
3 −3 4


b)
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 −25 26 −33
4 −4 5
3 −3 4


 1 5 2

1 1 7
0 −3 4



=

 −25(1) + 26(1)− 33(0) −25(5) + 26(1)− 33(−3) −25(2) + 26(7)− 33(4)
4(1)− 4(1) + 5(0) 4(5)− 4(1) + 5(−3) 4(2)− 4(7) + 4(5)
3(1)− 3(1) + 4(0) 3(5)− 3(1) + 4(−3) 3(2)− 3(7) + 4(4)



=

 1 0 0
0 1 0
0 0 1


3)

a) ˆ 1
4

0
x−

1
2dx = 2x 1

2
∣∣∣ 1

4

0
= 2

(1
4

) 1
2

= 2
(1

2

)
= 1

b)

E(X) =
ˆ 1

4

0
x (x)−

1
2 dx =

ˆ 1
4

0
x

1
2dx = 2

3x
3
2

∣∣∣∣
1
4

0
= 2

3

(1
4

) 3
2

= 2
3

(1
8

)
= 1

12

c)

E
(
X2
)

=
ˆ 1

4

0
x2x−

1
2dx =

ˆ 1
4

0
x

3
2dx = 2

5x
5
2

∣∣∣∣
1
4

0
= 2

5

(1
4

) 5
2

= 2
5

( 1
32

)
= 1

80

(E (X))2 =
( 1

12

)2
= 1

144

V ar(X) = E
(
X2
)
− (E (X))2 = 1

80 −
1

144 = 9
720 −

5
720 = 4

720 = 1
180

d)

ψ(t) = E
(
ety
)

= 3
ˆ 0

−∞
etye3ydx = 3

ˆ 0

−∞
ey(3+t)dy = lim

a→ −∞ 3
ˆ 0

a

ey(3+t)dy

= lim
a→ −∞

3ey(3+t)

3 + t

∣∣∣∣∣
0

a

= lim
a→ −∞

3
3 + t

(
e0(3+t) − ea(3+t)

)
= 3

3 + t

ψ
′(t) = − 3

(3 + t)2

ψ
′′(t) = 2 (3) (3 + t)

(3 + t)4 = 6
(3 + t)3

ψ
′(0) = −1

3 = E(Y )
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ψ
′′(0) = 6

27 = 2
9 = E

(
Y 2
)

V ar(Y ) = E
(
Y 2
)
− (E (Y ))2 = 2

9 −
1
9 = 1

9
e)

V ar(3X + 4Y + 1) = 9V ar(X) + 16V ar(Y ) + 2 (3) (4)Cov (X, Y )

= 9
( 1

180

)
+ 16

(1
9

)
+ 2 (3) (4) (2) = 9

180 + 320
180 + 8640

180 = 8969
180 ≈ 49.828

4)

a)
dU = Uxdx+ Uydy = (10x+ 3y) dx+ (3x+ 4y) dy

b)
d2U = d(dU) = d (Uxdx+ Uydy) = d (Uxdx) + d (Uydy)

= Uxxdx
2 + Uyxdxdy + Uxydydx+ Uyydy

2 = Uxxdx
2 + 2Uxydxdy + Uyydy

2

= 10dx2 + 2 (3) dxdy + 4dy2 = 10dx2 + 6dxdy + 4dy2

c) ∣∣∣∣∣ 10 3
3 4

∣∣∣∣∣ = 40− 9 = 31

d) The first leading principal minor is |10| > 0 and the second leading principal minor is
31 > 0, so d2U is positive definite.

5)

a)
L = x0.4

1 x0.5
2 + λ (108− 3x1 − 4x2)

b)
∂L

∂x1
= 0.4x−0.6

1 x0.5
2 − 3λ = 0→ λ = 0.4x0.5

2
3x0.6

1

∂L

∂x2
= 0.5x0.4

1 x−0.5
2 − 4λ = 0→ λ = 0.5x0.4

1
4x0.5

2

∂L

∂λ
= 108− 3x1 − 4x2 = 0

Setting the λ′s equal,

5



0.4x0.5
2

3x0.6
1

= 0.5x0.4
1

4x0.5
2
→ 16

10x2 = 15
10x1 → x1 = 16

15x2

Plugging into the budget constraint:
108− 3

(16
15x2

)
− 4x2 = 0→ 108− 48

15x2 −
60
42x2 = 0→ 108 = 108

15 x2 → x∗2 = 15

Plugging back into the marginal rate of substitution
x∗1 = 16

c)
L11 = 4

10

(
− 6

10

)
x−1.6

1 x0.5
2 = − 6

25x
−1.6
1 x0.5

2

L12 = 4
10

1
2x
−0.6
1 x−0.5

2 = L21 = 1
5x
−0.6
1 x−0.5

2

L22 = 1
2

(
−1

2

)
x0.4

1 x−1.5
2 = −1

4x
0.4
1 x−1.5

2

g1 = 3, g2 = 4

Since x1 and x2 are always positive, the value of these variables will not change the sign of
the bordered hessian, so we can form the bordered hessian with just the coefficients in order
to find the sign. Forming the bordered Hessian with x1 and x2 and plugging in x∗1 = 16 and
x∗2 = 15 is the correct way to find the exact value of the bordered Hessian, which will be
positive. ∣∣∣∣∣∣∣

0 3 4
3 − 6

25
1
5

4 1
5 −1

4

∣∣∣∣∣∣∣ = −3
∣∣∣∣∣ 3 1

5
4 −1

4

∣∣∣∣∣+ 4
∣∣∣∣∣ 3 − 6

25
4 1

5

∣∣∣∣∣
= −3

(
−3

4 −
4
5

)
+ 4

(3
5 + 24

25

)
> 0

Since the bordered Hessian is greater than 0, d2u is negative definite, which means that
u (x∗1, x∗2) is a maximum.

6)

a) First, put the differential equation in the standard form

y
′ −

(2
x

)
y = x

So, the integrating factor is

µ(t) = e−
´ 2

x
dx = e−2ln|x| = eln x

−2 = 1
x2

Applying the formula

y(x) =
´ 1

x2xdx+ c
1
x2

= ln |x|+ c
1
x2

= x2 (ln |x|+ c)
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b) This is a separable differential equation, so first put it in the proper form
(2y − 4) dy =

(
3x2 + 4x− 4

)
dxˆ

(2y − 4) dy =
ˆ (

3x2 + 4x− 4
)
dx

y2 − 4y = x3 + 2x2 − 4x+ c

Next, let’s apply the initial condition y(1) = 3
(3)2 − 4(3) = 13 + 2(1)2 − 4(1) + c→ c = −2

So the implicit particular solution to the initial value problem is then
y2 − 4y = x3 + 2x2 − 4x− 2

To find the explicit solution, first rewrite as
y2 − 4y −

(
x3 + 2x2 − 4x− 2

)
= y2 − 4y +

(
−x3 − 2x2 + 4x+ 2

)
= 0

Use the quadratic formula

y(x) =
4±

√
16− 4(1) (−x3 − 2x2 + 4x+ 2)

2

=
4±

√
16 + 4 (x3 + 2x2 − 4x− 2)

2
= 2±

√
4 + x3 + 2x2 − 4x− 2

Now, to figure out which one of the signs it should be, we must reapply the initial value

3 = y(1) = 2±
√

1 + 2− 4 + 2 = 2± 1 = 3, 1

So, the ” + ” sign must be correct for our solution. So the explicit solution is
y(x) = 2 +

√
x3 + 2x2 − 4x+ 2

7)
f(x) = (x+ 1)

1
2 f(0) = 1

f
′(x) = 1

2 (x+ 1)−
1
2 f

′(0) = 1
2

f
′′(x) = −1

4 (x+ 1)−
3
2 f

′′(0) = −1
4

f
′′′(x) = 3

8 (x+ 1)−
5
2 f

′′′(0) = 3
8

f(x) = f(0) = f
′(0)(x− 0) + f

′′(0)
2! (x− 0)2 + f

′′′(0)
3! (x− 0)3

√
x+ 1 ≈ 1 + x

2 −
1
4

1
2!x

2 + 3
8
x3

3! = 1 + x

2 −
x2

8 + x3

16
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8)

a)
H0 : µ = 0

H1 : µ 6= 0

b)

t =
√
n
(
X − µ

)
s

=
√

31 (2.3− 0)
5 = 2.56

Now, we want to check whether this is significant at the 5% level, which with 30 degrees of
freedom gives us tc = 2.042.
.

t > tc → 2.56 > 2.042

So, X is significant at the 5% level. That is, we reject the null hypothesis that µ = 0 with
95% confidence.

c)
To find an approximation for the p-value, all we must do is look up the t-statistic and degrees
of freedom on the t-table. The p-value is somewhere between 0.01 and 0.02, looks to be about
0.015.

d) A p-value of 0.015 means that if it was true that the true population mean actually is 0,
then if we took an infinite number of samples from the population, the effect size we would
get would be bigger than the one we found in our one sample roughly 1.5% of the time. So,
in conventional significance level terms, we can say that our result is significant at the 5%
level, but not the 1% level.

e) 99% confidence interval:(
X − tc

s√
n
,X + tc

s√
n

)
=
(

2.3− 2.75
(

5√
31

)
, 2.3 + 2.75

(
5√
31

))
= (−0.17, 4.77)

Since 0 is in the 99% confidence interval, we cannot say with 99% confidence that we are
able to reject the null hypothesis.
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