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Bias and Efficiency

An estimator of a parameter, θ , is unbiased if the mean of its
sampling distribution is equal to θ . That is, if

E
(

θ̂

)
= θ

where θ̂ is the parameter estimated from the sample whereas θ is the
true population parameter.
This is a desirable property for an estimator, but many estimators are
unbiased. We also need another criteria to determine the best
estimator.
An unbiased estimator θ̂1 is more efficient than another unbiased
estimator θ̂2, if the sampling variance of θ̂1 is less than that of θ̂2.
That is,

Var
(

θ̂1
)
< Var

(
θ̂2
)
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Proof of Sample Mean Unbiasedness

Consider independent and identically distributed random variables
X1,X2, ...,Xn where E (X1) = E (X2) = ... = E (Xn) = µ.

E
(

∑Xi
n

)
=

1
nE
(
∑Xi

)
=

1
n ∑E (Xi ) =

1
nnµ = µ
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Proof of Sample Variance Unbiasedness

Consider iid random variables that form a random sample, X1, ...,Xn.
Also, E (Xi ) = µ = E

(
X
)
and the population variance is

Var (Xi ) = σ2.

E
(
s2
x
)

= E
[

∑
(
Xi −X

)2

n−1

]
=

1
n−1E

[
∑

(
X 2

i −2XXi + X 2)]

=
1

n−1E
[
∑X 2

i −2X ∑Xi + X 2
∑1

]
=

1
n−1E

[
∑X 2

i −2nX 2
+ nX 2]

=
1

n−1

[
nE
(
X 2

i
)
−nE

(
X 2)]

=
n

n−1E
(

X 2
i −E

(
X 2))

So, we must find what E
(
X 2

i
)
and E

(
X 2) are.

E
(
X 2

i
)

= Var (Xi ) + (E (Xi ))2 = σ
2 + µ

2
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Proof of Sample Variance Unbiasedness

E
(

X 2)
= Var

(
X
)

+
(
E
(
X
))2

= Var
(
1
n ∑Xi

)
+ µ

2 =
1
n2 Var

(
∑Xi

)
+ µ

2

=
1
n2 ∑Var (Xi ) + µ

2 =
1
n2 nσ

2 + µ
2 =

1
nσ

2 + µ
2

Then, plugging back in:

E
(
s2
x
)

=
n

n−1

[
σ

2 + µ
2−
(
1
nσ

2 + µ
2
)]

=
n

n−1

[
n−1

n σ
2
]

= σ
2
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Bias and Efficiency
Theorem: If X1, ...,Xn are a random sample from a population with
mean µ and variance σ2, then X is a random variable with mean µ

and variance σ2

n .
Example: Suppose that µ is the mean value of parental income
among UCSC students and σ2 is the variance. Suppose that we take
one random sample of 10 students and one random sample of 100
students where X 1 is the mean value for the first 10 students sampled
and X 2 is the mean for all 100 students sampled.
We want to see which sample is more efficient and check the bias of
each. By the above theorem,

E
(
X 1
)

= µ = E
(
X 2
)

Var
(
X 1
)

=
σ2

10 and Var
(
X 2
)

=
σ2

100
So, both samples are unbiased, but Var

(
X 2
)
< Var

(
X 1
)
, so the

larger sample is more efficient. This is one reason why having a larger
sample size is beneficial.
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Student’s t-Distribution
If we know the population mean and variance, we can fully
characterize a normally distributed random variable. However, we
rarely know this.
In order to find statistical significance and perform hypothesis testing,
we use the student’s t-distribution, which describes samples drawn
from a full population. The distribution varies based on sample size,
and the larger the sample, the more the distribution resembles a
normal distribution.
We want to use the t-distribution rather than the normal either if our
sample is very small or we do not know the population standard
deviation.
If Z ∼ N(0,1) and X ∼ χ2(n), and Z and X are independent, then
the t-distribution with n degrees of freedom is

t(n) =
Z√
X/n

= Z
√

n
X
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Student’s t-Distribution

Alternatively, let X1, ...,Xn be the numbers observed in a sample from
a normally distributed population with mean µ. Then,

t =
X −µ

s/
√

n

The sampling distribution of this t-statistic or t-value is the
t-distribution with n−1 degrees of freedom.
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Student’s t-Distribution
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Convergence in Probability
Convergence in probability: A sequence Z1,Z2, ... of random variables
converges to b in probability if for every number ε > 0,

lim
n→ ∞

Pr (|Zn−b|< ε) = 1

This property is denoted by

Zn
p
→ b

which is stated as Zn converges to b in probability where the symbol
p
→ is referred to as a probability limit.

Intuitively, the above definition says that Zn converges to b in
probability if the probability that Zn lies in each given interval around
b, no matter how small this interval may be, approaches 1 as n→ ∞.
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Law of Large Numbers

Suppose that X1, ...,Xn form a random sample from a distribution for
which the mean is µ and for which the variance is finite. Let Xn
denote the sample mean, then

Xn
p
→ µ

The above result is called the law of large numbers and it says there
is a high probability that Xn will be close to µ if the sample size n is
large.
So, if a large random sample is taken from a distribution with an
unknown mean, the sample mean should come close to the true
population mean.
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Law of Large Numbers
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Central Limit Theorem

Central Limit Theorem (CLT): If the independent random variables
X1, ...,Xn form a random sample of size n from a given distribution
with mean µ and variance σ2, then for each fixed number x ,

lim
n→ ∞

Pr
[

X −µ

σ/
√

n ≤ x
]

= Φ(x)

where Φ denotes the cdf of the standard normal distribution.
So, this very powerful theorem says that if we take a large random
sample from any distribution with mean µ and variance σ2, the
distribution of the random variable X−µ

σ/
√

n will be approximately the
standard normal distribution.
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Central Limit Theorem

So, the distribution of X will be approximately normal with mean µ

and variance σ2

n or the distribution of ∑
n
i=1 Xi will be approximately

the normal distribution with mean nµ and variance nσ2.
Amazingly, no matter what the distribution of our data is, the CLT
means that we can model a sample from any distribution as a
student’s t-distribution and thus use the t-test for hypothesis testing
as long as the sample size is large enough.
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Central Limit Theorem Example
Below are shown the resulting frequency distributions each based on
500 means. For N = 4, 4 scores were sampled from a uniform
distribution 500 times and the mean computed each time. The same
method was followed with means of 7 scores for N = 7 and 10 scores
for N = 10.

90
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Central Limit Theorem Example

Suppose that a fair coin is tossed 900 times. Approximate the
probability of obtaining more than 495 heads using the Central Limit
Theorem.
Let Xi = 1 if a head is obtained on the ith toss and 0 otherwise.
Then, E (Xi ) = 1

2 and Var (Xi ) = 1
4 (recall that the variance of the

Bernoulli distribution is p(1−p).
So, the values X1, ...,X900 form a random sample of size n = 900 from
a distribution with mean 1

2 and variance 1
4 .
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Central Limit Theorem Example

The Central Limit Theorem tells us that ∑
900
i=1 Xi will be

approximately normal with mean 900
(1

2
)

= 450 and variance
900

(1
4
)

= 225, with standard deviation
√
225 = 15.

So, the variable Z = H−450
15 will have approximately the standard

normal distribution. Thus,

Pr (H > 495) = Pr
(

H−450
15 >

495−450
15

)
= Pr (Z > 3)≈ 1−φ(3) = 1− .9987 = 0.0013
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Hypothesis Testing

Suppose that you see an advertisement by a student who is offering
to tutor economics classes for $10 an hour. You want to know how
close this rate is to the average. What if the average is $20 an hour?
How about $15? $10.5? Is this sufficiently “close?”
To assess this question, we must perform four steps.

I 1) Survey a random sample of tutors
I 2) Calculate sample mean X .
I 3) Calculate standard error of X .
I 4) Compare X to $10.
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Hypothesis Testing

We want to formally test whether $10 is actually statistically similar
to the average. If we want to test that the average tutoring rate is
$10 an hour, then we call this the null hypothesis. That is, the null
hypothesis is what we assume is true unless our test proves otherwise.
The alternative hypothesis is any alternative.
Notation:

I H0 : null hypothesis
I H1 or Ha : alternative hypothesis

In our example,
I H0 : µ = 10
I H1 : µ 6= 10 (or µ > 10 or µ < 10)

µ 6= 10 is a two-tailed test and µ > 10 and µ < 10 are one-tailed tests.
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Hypothesis Testing

Generally we conduct a test by using an estimator from our sample
and checking to see how different it is from some specified value such
as X .
Usually our estimator will have a t-distribution, F-distribution, or
χ2-distribution.
Intuitively, we conduct the test by creating some critical region where
we reject the null hypothesis if the estimator falls in that critical
region.
If the estimator does not fall in the critical region then we “accept”
(technically fail to reject) the null hypothesis.
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Types of Error

Type I error: The procedure may lead to a rejection of the null
hypothesis when the null hypothesis is true.
Type II error: The procedure may fail to reject the null hypothesis
when it is false.
The probability of a type I error is the size of the test. It is commonly
referred to as the significance level (α).
The power of a test is the probability that it will correctly lead to
rejection of a false null hypothesis.
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Hypothesis Testing
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Hypothesis Testing

Let us return to our tutoring example.
H0 : µ = 10
H1 : µ 6= 10
Assume that the distribution of tutoring rates is normal with mean µ

and variance σ2.
Suppose we have a sample of 16 tutors with X = 11.80 and s2 = 9

Recall that
√

n(X−µ)
s ∼ t(n−1). We have all of this information

except for µ which is what we are trying to test. So, we can use the
t-test.
That is, we model our sample as a t-distribution and assess whether
the t-statistic is greater than some critical value, where the critical
value is based on the significance level we are trying to test. If it is,
we reject the null.
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Hypothesis Testing

In our tutoring example, suppose that we want to examine if X is
statistically equal to µ at the 5% significance level. Since we are
performing a two-tailed test, we use α = 0.025 to find our
significance. Then, with 15 degrees of freedom, we can see from the
t-table that the t-critical value is tc = 2.131.

In the two-tailed case, if
√

n(X−µ)
s <−tc or

√
n(X−µ)

s > tc , then reject
H0. In this example:

√
16(11.80−10)

3 = 2.4> 2.131→ Reject H0
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Hypothesis Testing

More generally, we can compare the means of two samples to see if
they are equal, we do not only have to compare to a constant.
Suppose we have two samples T and C with two sample means, XT
and XC with variances varT and varC , and sample sizes nT and nC .
Then, we can define the t-statistic as

t =
XT −XC√
varT
nT

+ varC
nC

The degrees of freedom for the test is

nT + nC −2
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Confidence Intervals

We now know how to tell if a null hypothesis is true or not at a
certain confidence level, but we would also like to be able to compute
intervals containing the true parameter with some desired level of
confidence.
Say α = 0.05, which we call a 5% significance level. Think of this as
the proportion of random samples where the true parameter falls in
our estimated range.
For a population with unknown mean µ and unknown standard
deviation, a confidence interval for the population mean is X ± tc

s√
n .

Jijian Fan (UC Santa Cruz) ECON 186 26 / 30



Confidence Interval Example
So, for our tutoring example, the 95% confidence interval is(

X − tc
s√
n ,X + tc

s√
n

)
=

(
11.8−2.131∗ 3√

16
,11.8+2.131∗ 3√

16

)
= (10.2,13.4)

So, since 10 does not lie in our 95% confidence interval, we can say
that we are 95% confident that 10 is not the population mean. Are
we 99% confident though?(

X − tc
s√
n ,X + tc

s√
n

)
=

(
11.8−2.947∗ 3√

16
,11.8+2.947∗ 3√

16

)
= (9.6,14.0)

Since 10 does lie in this confidence interval, we cannot say that 10 is
not the population mean with 99% confidence. Could also have used
t-test to determine this.
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P-values

We have just explored the concept of hypothesis testing, which tells
us whether we should reject some hypothesis with some confidence
level? However, what if we want to know more generally what the
probability is that our result is actually more extreme than some
random event?
The p-value is the probability, under the assumption of the null
hypothesis, of obtaining a result equal to or more extreme than what
was actually observed.
Another interpretation is: The p-value is the smallest level α0 such
that we would reject the null-hypothesis at level α0 with the observed
data.
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P-values

To calculate p-values, we can use the following expressions
I For a right tail event:

Pr (X ≥ x |H)

I For a left tail event:
Pr (X ≤ x |H)

I For a double tailed event:

2∗min{Pr (X ≤ x |H) ,Pr (X ≥ x |H)}
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P-values

So, we can calculate p-values directly from our calculated t-statistic.
Consider our previous example where we calculated a t-statistic of 2.4
with 15 degrees of freedom and we were performing a two-tailed test.
From the t-table, we can see that our p-value is roughly 0.03. The
interpretation is that if the mean tutoring rate in the population
actually was 10, the sample mean of 11.80 that we got from our one
sample would happen randomly about about 3% of the time.
So, we say that this result is significant at the 5% level, but it is not
significant at the 1% level.
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