ECON 186 Class Notes: Optimization Part 3
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Second Order Conditions for Constrained Optimization

@ Suppose we have a function z = f(x,y) subject to g(x,y) =c. The
second order conditions in the constrained case still revolve around
positive and negative definiteness, but instead of being concerned
with all possible values of dx and dy, we want only the values of dx
and dy that satisfy the linear constraint

gxdx+g,dy =0

@ Then the second-order necessary conditions are:

» For maximum of z: d?z negative semidefinite, subject to dg =0
» For minimum of z: d?z positive semidefinite, subject to dg =0

@ The second-order sufficient order conditions are:

» For maximum of z: d?z negative definite, subject to dg =0
» For minimum of z: d?z positive definite, subject to dg =0
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Second Order Conditions for Constrained Optimization

@ Suppose that we are a given a function f(x,y) then we recall that the

Hessian of f is
fxx f;(y

fix  fyy
@ However, again consider the case where f(x,y) now has a constraint
so that the Lagrangian can be written as

L= f(va)+)L[C_g(Xay)]

@ In the constrained case, we determine positive and negative
definiteness by the bordered Hessian, which is simply the Hessian of
the Lagrangian function “bordered” by the first derivatives of the
constraint. So, the conditions are

. fini
o d2zis | Pootlve de inite subject to dg = 0 iff
negative definite

0 & &g y < 0
8x Lxx ny 0
>
8 Ly Ly
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Second Order Conditions - Multiconstraint Case

@ Suppose we are attempting to optimize a function with n constraints.
7z = f(xl,...,x,,)—i—):j”;l Aj [cj —-g (Xl,...,x,,)]
@ Then, the bordered Hessian is

0o 0 0 g & - &
0o o0 0 & & - &
. 0o 0 0 &’ & &n
{H|:
gl & &1 211 Zi2 Zin
g & & Zn  Z» Zon
g% g,21 &n Zn Zn Znn
@ For a maximum of z, a sufficient condition is that ‘Hm+1|, Hm+2},..., |H,7|
alternates in sign, where [Hm.1| has sign (—1)™".
@ For a minimum of z, a sufficient condition is that {Hm+1| , \Hm+2| ey |ﬁn|

all have sign (—1)".

Jijian Fan (UC Santa Cruz) ECON 186 4/28



Lagrangian Example

@ A politician facing reelection can win votes according to the following
process: ¢ =5005%2MO%® | where S is hours of making campaign
speeches and M is the number of flyers mailed. Making speeches
costs $10 per hour, mailing flyers costs $.50 per flyer, and $8,000 are
available to spend on the campaign. Assuming the politician wants to
maximize votes, how should the budget be allocated between
speeches and mailing flyers?

U = 5005%2M%°

Budget constraint : pss + pmm =y = g(s,m) — 10s+.5m = 8000
L =5005%2M%6 1 (8000 — 105 — 0.5M)
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Lagrangian Example

@ First order conditions:

L _ 081406 107 _ ~0.2(500) MO
aL _ 020,04 oy ~ 0.6(500)5°2
gi — 8000 — 105 —0.5M =0
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Example

0.2(500)M%S  0.6(500)S%2  10MOS 600502
10598~ 0BMOF ' G088 poa

— M =605

105 +.5(60S) = 8000 — 40S = 8000 — S* = 200

M* = 60(200) = 12000

@ So, the politician can receive the most votes by spending
$10(200) = $2000 on speeches and $0.5(12000) = $6000 on flyers.

Jijian Fan (UC Santa Cruz) ECON 186 7 /28



Example

@ Second-order conditions:
L =100(—0.8)S 18M0¢ = _gps5— 1805

Lmm = 300(0.2)S%2(—0.4)M~ 14 = 24502y~ 14
Lsm =100(0.6)S 28 M4 = 60508y ~04
gs=10,g,=.5
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Example

@ So the bordered Hessian is

0 10 5
10 —80 60 :—10‘ 1;) _624 ‘+.5’ 12 _6%0 ':
5 60 —24 ' ‘

= —10(—240 — 30) 4 .5(600 + 40) = 2700 + 320 = 3020 > 0

@ So, the bordered Hessian is negative definite, which means that the
optimal values we found previously are in fact a maximum.
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Multiconstraint Second Order Condition Example

@ Suppose we want to find the critical points of the function
f(x,y,z) = z subject to g1 (x,y,z) =x+y+2z=12 and
g (x,y,z) =x%>+y? —z=0. Then the Lagrangian function is
Lix,y,z)=z4+A(12—x—y—2z)+pu (—Xz—yz—l—z)
@ We can form the bordered Hessian

0 0 -1 -1 -1
0 0 —2x 2y
|H3]=| -1 —-2x —2u 0

@ Since this determinant is very complicated to compute, we will refrain
from computing it.
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Homogenous Functions

@ A function is homogeneous of degree r if multiplication of each of its
independent variables by a constant j will alter the value of the
function by the proportion j’, that is, if

f(.jX17"'7.an) :.jrf(X]-"”’X”)

X 2w

e Example 1: Consider the function f(x,y,w) = v T3 Then, if we
multiply each variable by j, we get
1 2(j 2
(), 20w) _x 2w

f(JX’Jy ./W) (j ) 3(]X) _;+37:f(xay)w):jof(xvy7w)

» So, f is a homogeneous function of degree zero.
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Homogeneous Functions

2

e Example 2: Consider the function g(x,y,w) = X7 + 2%2 Then,
multiplying through by j, we get

(x)? 2(/W).Xj%_.xw
g(ix,jy,jw) = ) + ) —J<y+ . )—Jg( ,y,w)

@ So, g is homogeneous of degree one. That is, multiplication of each
variable by j will alter the value of the function exactly j-fold.

o Example 3: Consider the function h(x,y,w) = 2x? +3yw — w?.
Multiplying each variable by j will give us

h(jx.jy.jw) = 2(jx)* +3(jy) (jw) = (jw)* = /*h (x,y, w)

@ So, h is homogeneous of degree two. For example, doubling each
variable will quadruple the value of the function.
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Economic Application of Homogeneous Functions

@ Functions that are homogeneous of degree one are also known as
linearly homogeneous functions (note that they do not have to be
linear though!), and the main economic application is to that of
production functions.

@ Consider a production function where quantity depends on capital
(K) and labor (L). That is,

Q="f(K,L)
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Economic Application of Homogeneous Functions

@ Assume that Q = f(K,L) is linearly homogeneous, that is,
homogeneous of degree one. Then, there are three useful properties
of Q=f(K,L).

» Property 1: The average product of labor (AP, ) and of capital (APk)
can be expressed as functions of the capital-labor ratio, k = K , alone

and are homogeneous of degree zero.
» Property 2: The marginal product of labor (MP;) and of capital
(MPg) can be expressed as functions of k alone and are homogeneous

of degree zero.
» Property 3: K +L%f =Q

@ These properties represent why a linearly homogeneous production
function is said to have constant returns to scale.
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Proof of Property 1 of Linearly Homogeneous Production
Function

@ Proof of Property 1
» Multiply each independent variable, that is, K and L by % We get

2o (5) - (5

» Since K and L are to be replaced with k and 1, respectively, each time
they appear, f is now simply a function of k, which we call ¢(k). So,

Q
T =¢(k)

» However, we know that the average products are simply total quantity
divided by the amount of the respective input, so

Q
=00
0(k)

MP -
L K
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Cobb-Douglas Production Function

@ A very widely used production function is called the Cobb-Douglas
production function and takes the general form:

Q= AK*LP

@ To check the homogeneity of this production function, multiply each
input by j to get

A(j )Ot(jL)ﬁ :J-oH—ﬁ (AK“LB) :joc+l3Q

@ So, Q is homogeneous of degree (a4 f3).

@ Therefore, the Cobb-Douglas production function is said to have
constant returns to scale if @+ 3 =1, since it is linearly homogeneous.

e Additionally, if @+ < 1, the function is said to have decreasing
returns to scale, and if @+ > 1, the function has increasing returns
to scale.
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Nonlinear Programming and Kuhn-Tucker Conditions

@ So far, we have analyzed only linear and binding (equality)
constraints. However, optimization methodology extends naturally to
nonlinear constraints and objective functions, as well as inequality
constraints.

@ With no inequality constraints or sign restrictions on the choice
variables, the first-order condition for a relative extremum is simply
that the first partial derivatives of the Lagrangian function with
respect to all Lagrange multipliers and choice variables be zero.

» However, in nonlinear programming, similar conditions are called
Kuhn-Tucker conditions.
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Nonlinear Programming and Kuhn-Tucker Conditions

o First, consider the single-variable case where xj is restricted to be
nonnegative. That is, we want to maximize = = f (x;) subject to
X1 2 0.

» Three situations arise as in Figure 13.1 of Chaing and Wainwright,
page 403, 4th edition:

* (a) A relative maximum of y occurs in the interior of the shaded
feasible area, such as point A in Figure 13.1, then we have an interior
solution. The FOC in this case is % = f'(x) =0, same as usual.

* (b) A relative maximum can also occur on the vertical axis, shown in
point B, where x=0. Even here, where we have a boundary solution,
the FOC & = f'(x) =0 is still valid.

* (c) A relative maximum may take the position of points C or D,
because to qualify as a local maximum the point simply has to be
higher than the neighbouring points within the feasible region. Here,
f'(x)<0.
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Nonlinear Programming and Kuhn-Tucker Conditions

@ We can combine these statements into a single set of statements:
fl (Xl) S 0, X1 Z 0, and le/ (Xl) =0.

@ The third statement is called the complementary slackness condition
because either x; or f (x1) must equal 0.

@ Generalizing the problem to n variables, the problem becomes:
maximize T = f (xi,x2,...,X,) subject to x; >0 (=1,2,...,n)

@ Then, the Kuhn-Tucker conditions become

f; <0, xj >0, xjff=0 (=1,2,...,n)
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General Inequality Constraints

@ Suppose we want to optimize a function f (xy,x2, ..., X,) subject to m
constraints of the form g’ (x1,x2,...,x,) = 1; (i=1,...,m) where
the g's are inequality constraints.

@ Then, we can write the Lagrangian function as

m
L="f(x1,%2,.,Xn) + Z Ai [r,- —g'(x1,x2, ...,X,,)]
i=1
@ The Kuhn-Tucker conditions are:

Ly, <0 xj >0 and XjLlx, =0 [maximization|

i=1,2,...m
N - . _ ISP RS
Ll._o A’I_O and }L"Lli 0 (j:1,2,...,n )
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Nonlinear Programming Example

@ Maximize U = xy subject to x+y <100 and x <40 and x,y > 0.

@ The Lagrangian function is
L=xy+2A1(100 —x — y) + A2 (40 — x)

@ The Kuhn-Tucker conditions are:

Ly=y—2A1—2<0 x>0 and xLy =0 (1)
L,=x—21 <0 y>0 and  ylL,=0 (2)

L, =100—x—y >0 M >0 and MLy, =0 (3)
L)L2 =40—x Z 0 7LQ 2 0 and ;LQLM =0 (4)

Jijian Fan (UC Santa Cruz) ECON 186 21 /28



Nonlinear Programming Example

@ We solve nonlinear programming problems by trial and error.
Specifically, we look at each case and see if the solution violates the
inequality constraints.

@ First, consider x =0,y =0o0or x=0,y >0 or x >0,y =0. In any of
these cases, U = 0 which cannot possibly be the maximum since
x>0and y>0.

@ Then, we consider only where x >0 and y >0 (so Ly =L, =0), and
we have 4 cases from the complementary slackness conditions for the
constraints.

@ Case 1: 11 >0,4,>0,x>0,y >0

» By complementary slackness, 100 —x —y =0 and 40 —x = 0.
Combining the two, we get x* =40 and y* =100—40 =60. Then, (1)
and (2) give 60— A; —A» =0 and 40— A; = 0. So, 41 =40 and
Ao =60 —40 = 20. This satisfies all of the constraints so this is a
solution.
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Nonlinear Programming Example

@ Case 2: 41 >0,4,=0,x>0,y >0
> In this case, from complementary slackness, 100 —x — y = 0. So,
x =100—y. Then, plugging into (2), we get A; =100—y. Plugging
into (1), we get y — (100 —y) =0, so y* =50 and therefore x* = 50.
However, this violates the constraint x < 40. So, this cannot be a
solution.

@ Case 3: 11 =0,4,>0,x>0,y>0

» From complementary slackness, we know x* =40. Then, from (2),
Af = x* =40. However, this is not possible since ; =0, so this cannot
be a solution.

@ Case 4: 11 =0,4,=0,x>0,y >0

» From (1) and (2), we would get x* = y* =0, but this is a contradiction
since we are assuming x > 0,y > 0.
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Minimization

@ Suppose we instead want to minimize a function with inequality
constraints, then we use the fact that minimizing C is equivalent to
maximizing —C, but we must also flip the inequality constraints.

@ So, suppose that we want to minimize a function f where the
Lagrangian function is
L=17(x1,x2,.c,xn) + X711 Ai [r,- —g' (x1,%0, ...,X,,)] and x; > 0 for

i=1,2,...,n.
@ Then, the Kuhn-Tucker conditions for minimization are:
aL JL
a—xj >0 xj >0 Xja—xj =0 [minimization]
oL JL i=1,2,...m
— <0 A;i>0 Ai=—— =0 LY
87Lj B B oA < j=12,..n >
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Nonlinear Programming Minimization Example

o Minimize C = (x; —4) + (x, — 4)? subject to 2x; +3xz > 6 and
—3x1 —2x0 > —12 and x3,x > 0.

L= (X1 — 4)2 + (X2 — 4)2 + A (6 —2x1 — 3X2) + A (—12 +3x1+ 2X2)
@ The Kuhn-Tucker conditions are:
L,1126—2X1—3X2§0 A >0 )«1/_,11:0

L;L2 —1243x1 +2x <0 A >0 ).21_,12:0
Ly, :2(x1—4)—2A1+322 >0 x1>0 X1 Ly,
LX2 :2(X2—4)—311+22,220 x>0 Xgl_x2
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Nonlinear Programming Minimization Example

@ First, let's look at the cases for x; and x»:
@ Case 1: xy=0,x=0

» This does not satisfy the constraint 2x; +3x2 > 6.
@ Case 2: x3=0,x >0

» Using the two constraints, we get that xp € [2,6]. Plugging in xo =4 to
C, we get C = (x1 —4)>+ (xo —4)? = 1640 = 16. However, take for
example x; = 2, xo = 2 which satisfies the constraints and gives us
C=(2-4)>+(2—4)>=4+4=8. So there is no way x; = 0,x > 0
could provide a solution that minimizes C.

@ Case 3: x>0, =0

» Similiarly to Case 2, x; € [3,4], so plugging in 4, we get
C=0+16=16. Again, we could easily find a smaller value when
x1 > 0,x > 0.
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Nonlinear Programming Minimization Example

@ So, it must be the case that x; > 0,x> > 0. Then we must look at the
4 cases for the A;s.
@ Case 1: 41 >0, >0,x1 >0, >0
» Then, by complementary slackness, 6 —2x; —3x2 =0 and
—1243x1 4+ 2x2 = 0. Solving the first for x;, we get x; = 6723’(2
into the second, —12+ 3 (6 3X2> +2x%=0—>—-1249— %xz +2x9 =

0—-3= sz — X0 = —g. This violates the nonnegativity constraint.

@ Case 2: 11 >0,4,=0,x1 >0, >0

» By complementary slackness, 6 —2x; —3xo> = 0. From the FOC for xp,
2(X1 —4) —2M +34 = 2(X1 —4) —2A1 =0 — A1 = x; — 4. From the
FOC for xp, 2 (x» —4) — 31 +2Mp = 2(x2 —4) =34 = 0 — A; = 2024,
So,\Mi =A1 = x1—4= @ —x1= 2%4—5 = §(X2+2). Plugglng
into the constraint, we get 6 — 2 ( (x2+ 2)) 3x0=0—
6—%X2—%—3X2 =0— % 13xz =0—=x; = ig Now, we can see that
if we plug in to the equation for 7Ll, we get

M= % (x2x—4)= % (% —4) <0, so this cannot be a solution.
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Nonlinear Programming Minimization Example

@ Case 3: 41 =0, >0,x1 >0, >0

» From the FOC for xq,
2(X174)722,1+3;{2:0—>7312:2(X174)—)2,2=7%(X174).
From the FOC for x»,
2(X2 —4) —3A+2 =0— =24, = 2(X2 —4) — A =4—x>. Then,
2,223,2—)—%(X1—4):4—X2—>X2=%X1+%:%(Xl—l—Q). From
complementary slackness, —12+ 3x; 4+ 2x» = 0. Plugging in,
712+3x1+2( (x1 +2)) =0——1243x+3xa+5=0—

%xl - ? =0— X1 Plugging back in,
x5 = ( 28 4 2) = (?‘3‘) = %. This satisfies all the constraints, so it is a
solut1on

@ Case 4: A1 =0,4,=0,x1 >0, >0

» From the FOC for xq, 2(x1 —4) =0 — x; = 4. From the FOC for x,
2(x2 —4) =0 — x5 = 4. This violates the constraint —3x; —2xp > —12
because —3(4) —2(4) = —20 < —12, so this is not a solution.

Jijian Fan (UC Santa Cruz) ECON 186 28 /28



