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Hessians

The Hessian matrix is a matrix of all partial derivatives of a function.
Given the function f (x1,x2, ...,xn), where all partial derivatives exist
and are continuous, the Hessian of f is

H(f ) =


∂ 2f
∂x2

1

∂ 2f
∂x1∂x2

... ∂ 2f
∂x1∂xn

∂ 2f
∂x2∂x1

∂ 2f
∂x2

2
... ∂ 2f

∂x2∂xn
...

... . . . ...
∂ 2f

∂xn∂x1
∂ 2f

∂xn∂x2
... ∂ 2f

∂x2
n


Given the quadratic form d2z = fxxdx2 +2fxy dxdy + fyy dy2, the
Hessian determinant (sometimes called the Hessian) is

|H|=
∣∣∣∣ fxx fxy

fyx fyy

∣∣∣∣
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Examples

Is q = 5u2 +3uv +2v2 either positive or negative definite?

I The discriminant of q is
∣∣∣∣ 5 1.5
1.5 2

∣∣∣∣, with first leading principal minor

|5|> 0 and second leading principal minor∣∣∣∣ 5 1.5
1.5 2

∣∣∣∣= 10−2.25= 7.75> 0
I So, q is positive definite.

Given fxx =−2, fxy = 1, and fyy =−1 at a certain point on a function
z = f (x ,y), does d2z have a definite sign at that point?

I The discriminant of the quadratic form d2z is
∣∣∣∣ −2 1

1 −1

∣∣∣∣, which has

leading principal minors −2< 0 and
∣∣∣∣ −2 1

1 −1

∣∣∣∣= 1> 0, so d2z is

negative definite, which means the point in question is a local
maximum.
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Three-variable Quadratic Forms

Similar conditions can analogously be obtained for a function of three
or more variables. Consider a quadratic form q with three variables
u1, u2, and u3. Then:

q(u1,u2,u3) = d11(u2
1)+d12(u1u2)+d13(u1u3)+d21(u2u1)+d22(u2

2)

+d23(u2u3)+d31(u3u1)+d32(u3u2)+d33(u2
3) =

3

∑
i=1

3

∑
j=1

dijuiuj

=
[

u1 u2 u3
] d11 d12 d13

d21 d22 d23
d31 d32 d33

 u1
u2
u3

≡ u′Du
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Three-variable Quadratic Forms

Now, there are three leading principal minors:

|D1| ≡ d11 |D2| ≡
∣∣∣∣ d11 d12

d21 d22

∣∣∣∣ |D3| ≡

∣∣∣∣∣∣
d11 d12 d13
d21 d22 d23
d31 d32 d33

∣∣∣∣∣∣
The sufficient condition for positive definiteness (local minimum) is
that |D1|> 0, |D2|> 0, and |D3|> 0.

The sufficient condition for negative definiteness (local maximum) is
that |D1|< 0, |D2|> 0, and |D3|< 0.
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Examples
Find and classify the critical points of the function
f (x ,y ,z) = x2 + y2 +7z2 + xy +3yz .

I fx = 2x + y , fy = 2y + x +3z , fz = 14z +3y . It is easy to see that the
only critical point is (0,0,0).

I fxx = 2, fyy = 2, fzz = 14, fxy = fyx = 1, fxz = fzx = 0, fyz = fzy = 3. We
then compute the Hessian:∣∣∣∣∣∣

fxx fyx fzx
fyx fyy fyz
fzx fzy fzz

∣∣∣∣∣∣=
∣∣∣∣∣∣
2 1 0
1 2 3
0 3 14

∣∣∣∣∣∣
I |D1|= 2> 0, |D2|=

∣∣∣∣ 2 1
1 2

∣∣∣∣= 4−1= 3> 0, |D3|=

∣∣∣∣∣∣
2 1 0
1 2 3
0 3 14

∣∣∣∣∣∣=
2
∣∣∣∣ 2 3
3 14

∣∣∣∣−1
∣∣∣∣ 1 3
0 14

∣∣∣∣+0
∣∣∣∣ 1 2
0 3

∣∣∣∣= 2(28−9)−14= 24> 0
I So, since the Hessian is positive definite, the only critical point (0,0,0)

is a local minimum.
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Examples

Find the extreme values of
f (x1,x2,x3) = z =−x3

1 +3x1x3 +2x2−x2
2 −3x2

3
I f1 =−3x2

1 +3x3, f2 = 2−2x2, f3 = 3x1−6x3
I So, we have a system of three equations:

−3x2
1 +3x3 = 0→ x3 = x2

1 → x3 =
( 1

2
)2

= 1
4

2−2x2 = 0→ x2 = 1
3x1−6x3 = 0→ x1 = 2x3→ x1 = 2x2

1 → x1 =
1
2

I Additionally, since x1−2x3 = 0, (0,1,0) must also be a solution, so the
two roots are (0,1,0) and

( 1
2 ,1,

1
4
)
.
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Examples
f11 =−6x1, f22 =−2, f33 =−6, f12 = f21 = 0, f13 = f31 = 3,
f23 = f32 = 0
So, the Hessian is ∣∣∣∣∣∣

−6x1 0 3
0 −2 0
3 0 −6

∣∣∣∣∣∣
|D1|(0,1,0) = 0, so we already know that the point (0,1,0) is
indefinite, and in fact is not an extremum at all.

|D1|(1
2 ,1,

1
4) =−3< 0, |D2|(1

2 ,1,
1
4) =

∣∣∣∣ −3 0
0 −2

∣∣∣∣= 6> 0,

|D3|(1
2 ,1,

1
4) =

∣∣∣∣∣∣
−3 0 3
0 −2 0
3 0 −6

∣∣∣∣∣∣=−3
∣∣∣∣ −2 0

0 −6

∣∣∣∣+3
∣∣∣∣ 0 −2
3 0

∣∣∣∣=
−36+18=−18< 0
The Hessian is negative definite, so the point

(1
2 ,1,

1
4
)
is a maximum.
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Profit Maximization Example

Consider a competitive firm with the following profit function:

π = R−C = PQ−wL− rK

where P is price, Q is output, L is labor, K is capital, w is wage, r is
the rental rate of capital. Since the firm is in a competitive market,
P, w , and r are exogenous, while L, K , and Q are endogenous.
However, Q is also function of K and L via the Cobb-Douglas
production function

Q = Q(K ,L) = LαK β

Assume that there are decreasing returns to scale where α = β < 1
2 .

Substituting in, the objective function becomes

π(K ,L) = PLαK α −wL− rK
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Profit Maximization Example

First order conditions:

∂π

∂L = PαLα−1K α −w = 0→ K =
( w

Pα
L1−α

) 1
α

∂π

∂K = PαLαK α−1− r = 0
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Profit Maximization Example

Before we continue, let’s make sure that these equations for L and K
do actually give us a maximum.

|H|=
∣∣∣∣ πLL πLK

πKL πKK

∣∣∣∣= ∣∣∣∣ Pα(α−1)Lα−2K α Pα2Lα−1K α−1

Pα2Lα−1K α−1 Pα(α−1)LαK α−2

∣∣∣∣
= P2

α
2(α−1)2L2α−2K 2α−2−P2

α
4L2α−2K 2α−2

= P2
α

2(α2−2α +1)L2α−2K 2α−2−P2
α

4L2α−2K 2α−2

= P2
α

2L2α−2K 2α−2(1−2α)+P2
α

4L2α−2K 2α−2−P2
α

4L2α−2K 2α−2

= P2
α

2L2α−2K 2α−2(1−2α)

|H1|= Pα(α−1)Lα−2K α < 0 and |H|> 0, so the hessian is negative
definite, so L and K as defined by the FOC’s represents the optimal
quantities that will maximize profit.
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Profit Maximization Example

Plugging in the FOC for L into the FOC for K , we get

PαLαK α−1− r = PαLα

[( w
Pα

L1−α

) 1
α

]α−1
− r

= 0→ PαLα

[( w
Pα

) 1
α L

1−α

α

]α−1
= Pα

( w
Pα

) α−1
α L

(1−α)(α−1)
α

+α − r

= P−
α−1

α
+1

α
− α−1

α
+1L

−α2+2α−1+α2
α w

α−1
α − r

= (Pα)
1
α L

2α−1
α w

α−1
α − r = 0→ (Pα)

1
α L

2α−1
α w

α−1
α = r →

(Pα)
1
α w

α−1
α r−1 = L−

2α−1
α = L

1−2α

α → L∗ =
(
Pαwα−1r−α

) 1
1−2α
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Profit Maximization Example

Similarly, we can find that K ∗ =
(
Pαrα−1w−α

) 1
1−2α

Then, we can find the optimal quantity expressed only as a function
of the exogenous parameters:

Q∗ = (L∗)α (K ∗)α =
(
Pαwα−1r−α

) α

1−2α
(
Pαrα−1w−α

) α

1−2α =

=

(
α2P2

wr

) α

1−2α
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Constrained Optimization
Up to this point, we have considered only problems of unconstrained
optimization, that is, where an economic entity chooses the values of
some variables to optimize a dependent variable with no restriction.
However, consider a firm which seeks to maximizes profits with the
production of two goods, but faces a production quota where
Q1 +Q2 = 950. In this case, the choice variables are not only
simultaneous, but also dependent. The solving of this problem is
called constrained optimization.
As another example, consider that a consumer wants to maximize
their utility, given by

U = x1x2 +2x1

However, the consumer does not have an infinite amount of money,
so they cannot buy an infinite amount of goods as would maximize
their utility. Instead, the individual only has $60 to spend and x1
costs $4 and x2 costs $2, so their budget constraint is

4x1 +2x2 = 60
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Constrained Optimization
So, the individual’s optimization problem can be stated as

max U = x1x2 +2x1 subject to

4x1 +2x2 = 60
We call this constraint a budget constraint and it restricts the domain
of the utility function, and as a result, the range of the objective
function.
In an unconstrained setting, x1 and x2 could take any value ≥ 0, but
now the pair (x1,x2) must lie on the budget line.
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Constrained Optimization

The first method of solving constrained optimization is that of
substitution. In the above example, we can take the budget constraint
and find:

x2 =
60−4x1

2 = 30−2x1

Plug into the utility function to get:

U = x1 (30−2x1)+2x1 = 32x1−2x2
1

∂U
∂x1

= 32−4x1 = 0→ x∗1 = 8

x2 = 30−2(8) = 14

U∗ = 8(14)+2(8) = 128

Also, we can easily see that dU2

dx2
1
=−4< 0, so x∗1 = 8 represents a

constrained maximum of U.
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Constrained Optimization
Another method, which is generally much more useful, especially for
more complex and more than one constraint is called the
Lagrange-multiplier method.
The Lagrangian function for the previous example is:

L = x1x2 +2x1 +λ (60−4x1−2x2)

λ is called the Lagrange multiplier (which we will discuss later). To
solve the Lagrangian, we treat λ as a choice variable, so that the
derivative with respect to λ will automatically satisfy the constraint.
The first order conditions are:

∂L
∂x1

= x2 +2−4λ = 0→ λ =
x2 +2
4

∂L
∂x2

= x1−2λ = 0→ λ =
x1
2

∂L
∂λ

= 60−4x1−2x2 = 0
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Constrained Optimization

λ = λ → x2 +2
4 =

x1
2 ≡Marginal rate of substitution→ x1 =

x2 +2
2

60−4
(

x2 +2
2

)
−2x2 = 0→ 60−4x2−4= 0→ 4x2 = 56→ x∗2 = 14

60−4x1−28= 0→ 4x1 = 32→ x∗1 = 8
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Lagrangian Method
Given an objective function

z = f (x ,y)

subject to
g(x ,y) = c

we can write the Lagrangian function as

L = f (x ,y)+λ [c−g(x ,y)]

Then, the first order conditions are

Lλ : c−g(x ,y) = 0

Lx : fx −λgx = 0

Ly : fy −λgy = 0
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Lagrangian Example

A firm’s production function is y =
√

x +
√

z and input prices are wx
and wz . Find the quantities of x and z that minimize cost subject to
the production function.

L = wxx +wzz−λ (
√

x +
√

z−y)

∂L
∂x : wx −

1
2λx−

1
2 = 0→ wx =

1
2λx−

1
2 → λ = 2wxx

1
2

∂L
∂z : wz −

1
2λz−

1
2 = 0→ wz =

1
2λz−

1
2 → λ = 2wzz

1
2

2wxx
1
2 = 2wzz

1
2 → x

1
2 = z

1
2

wz
wx
→ x = z w2

z
w2

x
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Lagrangian Example

y =
√

x +
√

z = z
1
2

wz
wx

+ z
1
2 =

z 1
2 wz + z 1

2 wx
wx

=
z 1

2 (wx +wz)

wx

→ z
1
2 =

wxy
wx +wz

→ z∗ = w2
x y2

(wx +wz)2

Plugging back into the marginal rate of technical substitution,

x∗ =
(

w2
x y2

(wx +wz)2

)
w2

z
w2

x
=

w2
z y2

(wx +wz)2

Jijian Fan (UC Santa Cruz) ECON 186 21 / 26



Lagrangian Multiplier Interpretation

The optimal value of L depends on λ ∗(c), x∗(c), y∗(c), so

L∗ = f (x∗,y∗)+λ
∗ [c−g (x∗,y∗)]

dL∗
dc = (fx −λ

∗gx )
dx∗
dc +(fy −λ

∗gy )
dy∗
dc +[c−g (x∗,y∗)] dλ ∗

dc +λ
∗

However, the first order conditions tell us that c = g (x∗,y∗),
fx = λ ∗gx , and fy = λ ∗gy , so the first three terms on the right hand
side drop out and we are left with

dL∗
dc = λ

∗

So, the value of the Lagrange multiplier at the solution of the
problem is a measure of the effect of a change in the constraint via
the parameter c on the optimal value of the objective function.
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Lagrangian-Method with Multiple Constraints
The Lagrange-multiplier method is equally applicable when there is
more than one constraint, we just need a Lagrange-multiplier for each
constraint.
Consider the function f (x1,x2, ...,xn) subject to two constraints:
g (x1,x2, ...,xn) = c and h (x1,x2, ...,xn) = d . Then, the Lagrangian
function can be written as:

L = f (x1,x2, ...,xn)+λ [c−g (x1,x2, ...,xn)]+µ [d−h (x1,x2, ...,xn)]

Then, the first-order conditions will consist of the following (n+2)
simultaneous equations:

Lλ = c−g (x1,x2, ...,xn) = 0

Lµ = d−h (x1,x2, ...,xn) = 0

Li = fi −λgi −µhi = 0 (i = 1,2, ...,n)
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Multi-Constraint Lagrangian Example

Find the maximum and minimum of f (x ,y ,z) = 4y −2z subject to
2x −y − z = 2 and x2 + y2 = 1. The Lagrangian function is:

L = 4y −2z +λ (2−2x + y + z)+µ
(
1−x2−y2)

The first order conditions are:

Lλ : 2−2x + y + z = 0 (1)

Lµ : 1−x2−y2 = 0 (2)

Lx :−2λ −2xµ = 0 (3)

Ly : 4+λ −2yµ = 0 (4)

Lz :−2+λ = 0 (5)
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Multi-Constraint Lagrangian Example

(5)→ λ = 2

Plug in λ = 2 to (3) and (4):

(−3)→−2(2)−2xµ = 0→−2xµ = 4→ x =− 2
µ

(6)

(4)→ 4+2−2yµ = 0→ 6= 2yµ → y =
3
µ

(7)

Plug in (6) and (7) to (2):

1−
(
− 2

µ

)2
−
(
3
µ

)2
= 0→ 1= 13

µ2 → µ =±
√
13
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Multi-Constraint Lagrangian Example

So there are two possible solutions, where µ =
√
13 and µ =−

√
13.

Case 1: µ =
√
13

I Plugging back in to (6), (7), and then (2), we get x =− 2√
13 , y = 3√

13 ,

and 0= 2+2
(

2√
13

)
+ 3√

13 + z → z =−2− 7√
13

Case 2: µ =−
√
13

I Plugging back in to (6), (7), and then (2), we get x = 2√
13 , y =− 3√

13 ,

and 0= 2−2
(

2√
13

)
− 3√

13 + z → z =−2+ 7√
13

These are both potential optimum. To confirm, we must use the
second order conditions we will learn in the next lecture.
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