ECON 186 Class Notes: Optimization Part 2

Jijian Fan

Hessians

- The Hessian matrix is a matrix of all partial derivatives of a function.
- Given the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, where all partial derivatives exist and are continuous, the Hessian of f is

$$
H(f)=\left[\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

- Given the quadratic form $d^{2} z=f_{x x} d x^{2}+2 f_{x y} d x d y+f_{y y} d y^{2}$, the Hessian determinant (sometimes called the Hessian) is

$$
|H|=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|
$$

Examples

- Is $q=5 u^{2}+3 u v+2 v^{2}$ either positive or negative definite?
- The discriminant of q is $\left|\begin{array}{cc}5 & 1.5 \\ 1.5 & 2\end{array}\right|$, with first leading principal minor $|5|>0$ and second leading principal minor

$$
\left.\begin{array}{cc}
5 & 1.5 \\
1.5 & 2
\end{array} \right\rvert\,=10-2.25=7.75>0
$$

- So, q is positive definite.
- Given $f_{x x}=-2, f_{x y}=1$, and $f_{y y}=-1$ at a certain point on a function $z=f(x, y)$, does $d^{2} z$ have a definite sign at that point?
- The discriminant of the quadratic form $d^{2} z$ is $\left|\begin{array}{cc}-2 & 1 \\ 1 & -1\end{array}\right|$, which has leading principal minors $-2<0$ and $\left|\begin{array}{cc}-2 & 1 \\ 1 & -1\end{array}\right|=1>0$, so $d^{2} z$ is negative definite, which means the point in question is a local maximum.

Three-variable Quadratic Forms

- Similar conditions can analogously be obtained for a function of three or more variables. Consider a quadratic form q with three variables u_{1}, u_{2}, and u_{3}. Then:

$$
q\left(u_{1}, u_{2}, u_{3}\right)=d_{11}\left(u_{1}^{2}\right)+d_{12}\left(u_{1} u_{2}\right)+d_{13}\left(u_{1} u_{3}\right)+d_{21}\left(u_{2} u_{1}\right)+d_{22}\left(u_{2}^{2}\right)
$$

$$
\begin{aligned}
& +d_{23}\left(u_{2} u_{3}\right)+d_{31}\left(u_{3} u_{1}\right)+d_{32}\left(u_{3} u_{2}\right)+d_{33}\left(u_{3}^{2}\right)=\sum_{i=1}^{3} \sum_{j=1}^{3} d_{i j} u_{i} u_{j} \\
& \quad=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right]\left[\begin{array}{lll}
d_{11} & d_{12} & d_{13} \\
d_{21} & d_{22} & d_{23} \\
d_{31} & d_{32} & d_{33}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \equiv u^{\prime} D u
\end{aligned}
$$

Three-variable Quadratic Forms

- Now, there are three leading principal minors:

$$
\left|D_{1}\right| \equiv d_{11} \quad\left|D_{2}\right| \equiv\left|\begin{array}{ll}
d_{11} & d_{12} \\
d_{21} & d_{22}
\end{array}\right| \quad\left|D_{3}\right| \equiv\left|\begin{array}{lll}
d_{11} & d_{12} & d_{13} \\
d_{21} & d_{22} & d_{23} \\
d_{31} & d_{32} & d_{33}
\end{array}\right|
$$

- The sufficient condition for positive definiteness (local minimum) is that $\left|D_{1}\right|>0,\left|D_{2}\right|>0$, and $\left|D_{3}\right|>0$.
- The sufficient condition for negative definiteness (local maximum) is that $\left|D_{1}\right|<0,\left|D_{2}\right|>0$, and $\left|D_{3}\right|<0$.

Examples

- Find and classify the critical points of the function $f(x, y, z)=x^{2}+y^{2}+7 z^{2}+x y+3 y z$.
- $f_{x}=2 x+y, f_{y}=2 y+x+3 z, f_{z}=14 z+3 y$. It is easy to see that the only critical point is $(0,0,0)$.
- $f_{x x}=2, f_{y y}=2, f_{z z}=14, f_{x y}=f_{y x}=1, f_{x z}=f_{z x}=0, f_{y z}=f_{z y}=3$. We then compute the Hessian:

$$
\left|\begin{array}{ccc}
f_{x x} & f_{y x} & f_{z x} \\
f_{y x} & f_{y y} & f_{y z} \\
f_{z x} & f_{z y} & f_{z z}
\end{array}\right|=\left|\begin{array}{ccc}
2 & 1 & 0 \\
1 & 2 & 3 \\
0 & 3 & 14
\end{array}\right|
$$

- $\left|D_{1}\right|=2>0,\left|D_{2}\right|=\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|=4-1=3>0,\left|D_{3}\right|=\left|\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & 3 \\ 0 & 3 & 14\end{array}\right|=$ $2\left|\begin{array}{cc}2 & 3 \\ 3 & 14\end{array}\right|-1\left|\begin{array}{cc}1 & 3 \\ 0 & 14\end{array}\right|+0\left|\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right|=2(28-9)-14=24>0$
- So, since the Hessian is positive definite, the only critical point $(0,0,0)$ is a local minimum.

Examples

- Find the extreme values of

$$
f\left(x_{1}, x_{2}, x_{3}\right)=z=-x_{1}^{3}+3 x_{1} x_{3}+2 x_{2}-x_{2}^{2}-3 x_{3}^{2}
$$

- $f_{1}=-3 x_{1}^{2}+3 x_{3}, f_{2}=2-2 x_{2}, f_{3}=3 x_{1}-6 x_{3}$
- So, we have a system of three equations:

$$
\begin{gathered}
-3 x_{1}^{2}+3 x_{3}=0 \rightarrow x_{3}=x_{1}^{2} \rightarrow x_{3}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
2-2 x_{2}=0 \rightarrow x_{2}=1 \\
3 x_{1}-6 x_{3}=0 \rightarrow x_{1}=2 x_{3} \rightarrow x_{1}=2 x_{1}^{2} \rightarrow x_{1}=\frac{1}{2}
\end{gathered}
$$

- Additionally, since $x_{1}-2 x_{3}=0,(0,1,0)$ must also be a solution, so the two roots are $(0,1,0)$ and $\left(\frac{1}{2}, 1, \frac{1}{4}\right)$.

Examples

- $f_{11}=-6 x_{1}, f_{22}=-2, f_{33}=-6, f_{12}=f_{21}=0, f_{13}=f_{31}=3$, $f_{23}=f_{32}=0$
- So, the Hessian is

$$
\left|\begin{array}{ccc}
-6 x_{1} & 0 & 3 \\
0 & -2 & 0 \\
3 & 0 & -6
\end{array}\right|
$$

- $\left|D_{1}\right|(0,1,0)=0$, so we already know that the point $(0,1,0)$ is indefinite, and in fact is not an extremum at all.
- $\left|D_{1}\right|\left(\frac{1}{2}, 1, \frac{1}{4}\right)=-3<0,\left|D_{2}\right|\left(\frac{1}{2}, 1, \frac{1}{4}\right)=\left|\begin{array}{cc}-3 & 0 \\ 0 & -2\end{array}\right|=6>0$,
$\left|D_{3}\right|\left(\frac{1}{2}, 1, \frac{1}{4}\right)=\left|\begin{array}{ccc}-3 & 0 & 3 \\ 0 & -2 & 0 \\ 3 & 0 & -6\end{array}\right|=-3\left|\begin{array}{cc}-2 & 0 \\ 0 & -6\end{array}\right|+3\left|\begin{array}{cc}0 & -2 \\ 3 & 0\end{array}\right|=$
$-36+18=-18<0$
- The Hessian is negative definite, so the point $\left(\frac{1}{2}, 1, \frac{1}{4}\right)$ is a maximum.

Profit Maximization Example

- Consider a competitive firm with the following profit function:

$$
\pi=R-C=P Q-w L-r K
$$

- where P is price, Q is output, L is labor, K is capital, w is wage, r is the rental rate of capital. Since the firm is in a competitive market, P, w, and r are exogenous, while L, K, and Q are endogenous. However, Q is also function of K and L via the Cobb-Douglas production function

$$
Q=Q(K, L)=L^{\alpha} K^{\beta}
$$

- Assume that there are decreasing returns to scale where $\alpha=\beta<\frac{1}{2}$. Substituting in, the objective function becomes

$$
\pi(K, L)=P L^{\alpha} K^{\alpha}-w L-r K
$$

Profit Maximization Example

- First order conditions:

$$
\begin{gathered}
\frac{\partial \pi}{\partial L}=P \alpha L^{\alpha-1} K^{\alpha}-w=0 \rightarrow K=\left(\frac{w}{P \alpha} L^{1-\alpha}\right)^{\frac{1}{\alpha}} \\
\frac{\partial \pi}{\partial K}=P \alpha L^{\alpha} K^{\alpha-1}-r=0
\end{gathered}
$$

Profit Maximization Example

- Before we continue, let's make sure that these equations for L and K do actually give us a maximum.

$$
\begin{gathered}
|H|=\left|\begin{array}{cc}
\pi_{L L} & \pi_{L K} \\
\pi_{K L} & \pi_{K K}
\end{array}\right|=\left|\begin{array}{cc}
P \alpha(\alpha-1) L^{\alpha-2} K^{\alpha} & P \alpha^{2} L^{\alpha-1} K^{\alpha-1} \\
P \alpha^{2} L^{\alpha-1} K^{\alpha-1} & P \alpha(\alpha-1) L^{\alpha} K^{\alpha-2}
\end{array}\right| \\
=P^{2} \alpha^{2}(\alpha-1)^{2} L^{2 \alpha-2} K^{2 \alpha-2}-P^{2} \alpha^{4} L^{2 \alpha-2} K^{2 \alpha-2} \\
=P^{2} \alpha^{2}\left(\alpha^{2}-2 \alpha+1\right) L^{2 \alpha-2} K^{2 \alpha-2}-P^{2} \alpha^{4} L^{2 \alpha-2} K^{2 \alpha-2} \\
=P^{2} \alpha^{2} L^{2 \alpha-2} K^{2 \alpha-2}(1-2 \alpha)+P^{2} \alpha^{4} L^{2 \alpha-2} K^{2 \alpha-2}-P^{2} \alpha^{4} L^{2 \alpha-2} K^{2 \alpha-2} \\
=P^{2} \alpha^{2} L^{2 \alpha-2} K^{2 \alpha-2}(1-2 \alpha)
\end{gathered}
$$

- $\left|H_{1}\right|=P \alpha(\alpha-1) L^{\alpha-2} K^{\alpha}<0$ and $|H|>0$, so the hessian is negative definite, so L and K as defined by the FOC's represents the optimal quantities that will maximize profit.

Profit Maximization Example

- Plugging in the FOC for L into the FOC for K, we get

$$
\begin{gathered}
P \alpha L^{\alpha} K^{\alpha-1}-r=P \alpha L^{\alpha}\left[\left(\frac{w}{P \alpha} L^{1-\alpha}\right)^{\frac{1}{\alpha}}\right]^{\alpha-1}-r \\
=0 \rightarrow P \alpha L^{\alpha}\left[\left(\frac{w}{P \alpha}\right)^{\frac{1}{\alpha}} L^{\frac{1-\alpha}{\alpha}}\right]^{\alpha-1}=P \alpha\left(\frac{w}{P \alpha}\right)^{\frac{\alpha-1}{\alpha}} L^{\frac{(1-\alpha)(\alpha-1)}{\alpha}+\alpha}-r \\
=P^{-\frac{\alpha-1}{\alpha}+1} \alpha^{-\frac{\alpha-1}{\alpha}+1} L^{\frac{-\alpha^{2}+2 \alpha-1+\alpha^{2}}{\alpha}} w^{\frac{\alpha-1}{\alpha}}-r \\
=(P \alpha)^{\frac{1}{\alpha}} L^{\frac{2 \alpha-1}{\alpha}} w^{\frac{\alpha-1}{\alpha}}-r=0 \rightarrow(P \alpha)^{\frac{1}{\alpha}} L^{\frac{2 \alpha-1}{\alpha}} w^{\frac{\alpha-1}{\alpha}}=r \rightarrow \\
(P \alpha)^{\frac{1}{\alpha}} w^{\frac{\alpha-1}{\alpha}} r^{-1}=L^{-\frac{2 \alpha-1}{\alpha}}=L^{\frac{1-2 \alpha}{\alpha}} \rightarrow L^{*}=\left(P \alpha w^{\alpha-1} r^{-\alpha}\right)^{\frac{1}{1-2 \alpha}}
\end{gathered}
$$

Profit Maximization Example

- Similarly, we can find that $K^{*}=\left(P \alpha r^{\alpha-1} w^{-\alpha}\right)^{\frac{1}{1-2 \alpha}}$
- Then, we can find the optimal quantity expressed only as a function of the exogenous parameters:

$$
\begin{gathered}
Q^{*}=\left(L^{*}\right)^{\alpha}\left(K^{*}\right)^{\alpha}=\left(P \alpha w^{\alpha-1} r^{-\alpha}\right)^{\frac{\alpha}{1-2 \alpha}}\left(P \alpha r^{\alpha-1} w^{-\alpha}\right)^{\frac{\alpha}{1-2 \alpha}}= \\
=\left(\frac{\alpha^{2} P^{2}}{w r}\right)^{\frac{\alpha}{1-2 \alpha}}
\end{gathered}
$$

Constrained Optimization

- Up to this point, we have considered only problems of unconstrained optimization, that is, where an economic entity chooses the values of some variables to optimize a dependent variable with no restriction.
- However, consider a firm which seeks to maximizes profits with the production of two goods, but faces a production quota where $Q_{1}+Q_{2}=950$. In this case, the choice variables are not only simultaneous, but also dependent. The solving of this problem is called constrained optimization.
- As another example, consider that a consumer wants to maximize their utility, given by

$$
U=x_{1} x_{2}+2 x_{1}
$$

- However, the consumer does not have an infinite amount of money, so they cannot buy an infinite amount of goods as would maximize their utility. Instead, the individual only has $\$ 60$ to spend and x_{1} costs $\$ 4$ and x_{2} costs $\$ 2$, so their budget constraint is

$$
4 x_{1}+2 x_{2}=60
$$

Constrained Optimization

- So, the individual's optimization problem can be stated as

$$
\begin{aligned}
\max U= & x_{1} x_{2}+2 x_{1} \quad \text { subject to } \\
& 4 x_{1}+2 x_{2}=60
\end{aligned}
$$

- We call this constraint a budget constraint and it restricts the domain of the utility function, and as a result, the range of the objective function.
- In an unconstrained setting, x_{1} and x_{2} could take any value ≥ 0, but now the pair $\left(x_{1}, x_{2}\right)$ must lie on the budget line.

Constrained Optimization

- The first method of solving constrained optimization is that of substitution. In the above example, we can take the budget constraint and find:

$$
x_{2}=\frac{60-4 x_{1}}{2}=30-2 x_{1}
$$

- Plug into the utility function to get:

$$
\begin{gathered}
U=x_{1}\left(30-2 x_{1}\right)+2 x_{1}=32 x_{1}-2 x_{1}^{2} \\
\frac{\partial U}{\partial x_{1}}=32-4 x_{1}=0 \rightarrow x_{1}^{*}=8 \\
x_{2}=30-2(8)=14 \\
U^{*}=8(14)+2(8)=128
\end{gathered}
$$

- Also, we can easily see that $\frac{d U^{2}}{d x_{1}^{2}}=-4<0$, so $x_{1}^{*}=8$ represents a constrained maximum of U.

Constrained Optimization

- Another method, which is generally much more useful, especially for more complex and more than one constraint is called the Lagrange-multiplier method.
- The Lagrangian function for the previous example is:

$$
L=x_{1} x_{2}+2 x_{1}+\lambda\left(60-4 x_{1}-2 x_{2}\right)
$$

- λ is called the Lagrange multiplier (which we will discuss later). To solve the Lagrangian, we treat λ as a choice variable, so that the derivative with respect to λ will automatically satisfy the constraint. The first order conditions are:

$$
\begin{gathered}
\frac{\partial L}{\partial x_{1}}=x_{2}+2-4 \lambda=0 \rightarrow \lambda=\frac{x_{2}+2}{4} \\
\frac{\partial L}{\partial x_{2}}=x_{1}-2 \lambda=0 \rightarrow \lambda=\frac{x_{1}}{2} \\
\frac{\partial L}{\partial \lambda}=60-4 x_{1}-2 x_{2}=0
\end{gathered}
$$

Constrained Optimization

$$
\begin{gathered}
\lambda=\lambda \rightarrow \frac{x_{2}+2}{4}=\frac{x_{1}}{2} \equiv \text { Marginal rate of substitution } \rightarrow x_{1}=\frac{x_{2}+2}{2} \\
60-4\left(\frac{x_{2}+2}{2}\right)-2 x_{2}=0 \rightarrow 60-4 x_{2}-4=0 \rightarrow 4 x_{2}=56 \rightarrow x_{2}^{*}=14 \\
60-4 x_{1}-28=0 \rightarrow 4 x_{1}=32 \rightarrow x_{1}^{*}=8
\end{gathered}
$$

Lagrangian Method

- Given an objective function

$$
z=f(x, y)
$$

- subject to

$$
g(x, y)=c
$$

- we can write the Lagrangian function as

$$
L=f(x, y)+\lambda[c-g(x, y)]
$$

- Then, the first order conditions are

$$
\begin{gathered}
L_{\lambda}: c-g(x, y)=0 \\
L_{x}: f_{x}-\lambda g_{x}=0 \\
L_{y}: f_{y}-\lambda g_{y}=0
\end{gathered}
$$

Lagrangian Example

- A firm's production function is $y=\sqrt{x}+\sqrt{z}$ and input prices are w_{x} and w_{z}. Find the quantities of x and z that minimize cost subject to the production function.

$$
\begin{gathered}
L=w_{x} x+w_{z} z-\lambda(\sqrt{x}+\sqrt{z}-y) \\
\frac{\partial L}{\partial x}: w_{x}-\frac{1}{2} \lambda x^{-\frac{1}{2}}=0 \rightarrow w_{x}=\frac{1}{2} \lambda x^{-\frac{1}{2}} \rightarrow \lambda=2 w_{x} x^{\frac{1}{2}} \\
\frac{\partial L}{\partial z}: w_{z}-\frac{1}{2} \lambda z^{-\frac{1}{2}}=0 \rightarrow w_{z}=\frac{1}{2} \lambda z^{-\frac{1}{2}} \rightarrow \lambda=2 w_{z} z^{\frac{1}{2}} \\
2 w_{x} x^{\frac{1}{2}}=2 w_{z} z^{\frac{1}{2}} \rightarrow x^{\frac{1}{2}}=z^{\frac{1}{2}} \frac{w_{z}}{w_{x}} \rightarrow x=z \frac{w_{z}^{2}}{w_{x}^{2}}
\end{gathered}
$$

Lagrangian Example

$$
\begin{gathered}
y=\sqrt{x}+\sqrt{z}=z^{\frac{1}{2}} \frac{w_{z}}{w_{x}}+z^{\frac{1}{2}}=\frac{z^{\frac{1}{2}} w_{z}+z^{\frac{1}{2}} w_{x}}{w_{x}}=\frac{z^{\frac{1}{2}}\left(w_{x}+w_{z}\right)}{w_{x}} \\
\rightarrow z^{\frac{1}{2}}=\frac{w_{x} y}{w_{x}+w_{z}} \rightarrow z^{*}=\frac{w_{x}^{2} y^{2}}{\left(w_{x}+w_{z}\right)^{2}}
\end{gathered}
$$

Plugging back into the marginal rate of technical substitution,

$$
x^{*}=\left(\frac{w_{x}^{2} y^{2}}{\left(w_{x}+w_{z}\right)^{2}}\right) \frac{w_{z}^{2}}{w_{x}^{2}}=\frac{w_{z}^{2} y^{2}}{\left(w_{x}+w_{z}\right)^{2}}
$$

Lagrangian Multiplier Interpretation

- The optimal value of L depends on $\lambda^{*}(c), x^{*}(c), y^{*}(c)$, so

$$
\begin{gathered}
L^{*}=f\left(x^{*}, y^{*}\right)+\lambda^{*}\left[c-g\left(x^{*}, y^{*}\right)\right] \\
\frac{d L^{*}}{d c}=\left(f_{x}-\lambda^{*} g_{x}\right) \frac{d x^{*}}{d c}+\left(f_{y}-\lambda^{*} g_{y}\right) \frac{d y^{*}}{d c}+\left[c-g\left(x^{*}, y^{*}\right)\right] \frac{d \lambda^{*}}{d c}+\lambda^{*}
\end{gathered}
$$

- However, the first order conditions tell us that $c=g\left(x^{*}, y^{*}\right)$, $f_{x}=\lambda^{*} g_{x}$, and $f_{y}=\lambda^{*} g_{y}$, so the first three terms on the right hand side drop out and we are left with

$$
\frac{d L^{*}}{d c}=\lambda^{*}
$$

- So, the value of the Lagrange multiplier at the solution of the problem is a measure of the effect of a change in the constraint via the parameter c on the optimal value of the objective function.

Lagrangian-Method with Multiple Constraints

- The Lagrange-multiplier method is equally applicable when there is more than one constraint, we just need a Lagrange-multiplier for each constraint.
- Consider the function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ subject to two constraints: $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=c$ and $h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=d$. Then, the Lagrangian function can be written as:

$$
L=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\lambda\left[c-g\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]+\mu\left[d-h\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right]
$$

- Then, the first-order conditions will consist of the following $(n+2)$ simultaneous equations:

$$
\begin{gathered}
L_{\lambda}=c-g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
L_{\mu}=d-h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
L_{i}=f_{i}-\lambda g_{i}-\mu h_{i}=0 \quad(i=1,2, \ldots, n)
\end{gathered}
$$

Multi-Constraint Lagrangian Example

- Find the maximum and minimum of $f(x, y, z)=4 y-2 z$ subject to $2 x-y-z=2$ and $x^{2}+y^{2}=1$. The Lagrangian function is:

$$
L=4 y-2 z+\lambda(2-2 x+y+z)+\mu\left(1-x^{2}-y^{2}\right)
$$

- The first order conditions are:

$$
\begin{gather*}
L_{\lambda}: 2-2 x+y+z=0 \tag{1}\\
L_{\mu}: 1-x^{2}-y^{2}=0 \tag{2}\\
L_{x}:-2 \lambda-2 x \mu=0 \tag{3}\\
L_{y}: 4+\lambda-2 y \mu=0 \tag{4}\\
L_{z}:-2+\lambda=0 \tag{5}
\end{gather*}
$$

Multi-Constraint Lagrangian Example

$$
\text { (5) } \rightarrow \lambda=2
$$

- Plug in $\lambda=2$ to (3) and (4):

$$
\begin{gather*}
(-3) \rightarrow-2(2)-2 x \mu=0 \rightarrow-2 x \mu=4 \rightarrow x=-\frac{2}{\mu} \tag{6}\\
(4) \rightarrow 4+2-2 y \mu=0 \rightarrow 6=2 y \mu \rightarrow y=\frac{3}{\mu} \tag{7}
\end{gather*}
$$

- Plug in (6) and (7) to (2):

$$
1-\left(-\frac{2}{\mu}\right)^{2}-\left(\frac{3}{\mu}\right)^{2}=0 \rightarrow 1=\frac{13}{\mu^{2}} \rightarrow \mu= \pm \sqrt{13}
$$

Multi-Constraint Lagrangian Example

- So there are two possible solutions, where $\mu=\sqrt{13}$ and $\mu=-\sqrt{13}$.
- Case 1: $\mu=\sqrt{13}$
- Plugging back in to (6), (7), and then (2), we get $x=-\frac{2}{\sqrt{13}}, y=\frac{3}{\sqrt{13}}$, and $0=2+2\left(\frac{2}{\sqrt{13}}\right)+\frac{3}{\sqrt{13}}+z \rightarrow z=-2-\frac{7}{\sqrt{13}}$
- Case 2: $\mu=-\sqrt{13}$
- Plugging back in to (6), (7), and then (2), we get $x=\frac{2}{\sqrt{13}}, y=-\frac{3}{\sqrt{13}}$, and $0=2-2\left(\frac{2}{\sqrt{13}}\right)-\frac{3}{\sqrt{13}}+z \rightarrow z=-2+\frac{7}{\sqrt{13}}$
- These are both potential optimum. To confirm, we must use the second order conditions we will learn in the next lecture.

