ECON 186 Class Notes: Optimization Part 2
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Hessians

@ The Hessian matrix is a matrix of all partial derivatives of a function.

@ Given the function f(x1,x2,...,xn), where all partial derivatives exist
and are continuous, the Hessian of f is

[ 9% 9%f 9%f ]
3x12 dx1dxp T dx1dxp
9%f 9%f 9%f
H(f) _ 0x00x1 8x22 0x00xp
9%f 9%f 9%f
| Ixpdx1  Ixpdx2 T dx2

@ Given the quadratic form d?z = f,, dx? +2f,, dxdy + fyydyz, the
Hessian determinant (sometimes called the Hessian) is

fxx fxy

Hl =
ey
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Examples

o Is g =5u® 4 3uv +2v? either positive or negative definite?

» The discriminant of g is 15 1é5 ‘ with first leading principal minor
|5| > 0 and second leading principal minor
5 15
‘ 15 9 =10—-225=7.75>0
» So, q is positive definite.
e Given f, = -2, f,, =1, and f,, = —1 at a certain point on a function
z = f(x,y), does d?z have a definite sign at that point?
» The discriminant of the quadratic form d?z is 712 —11 ’ which has
o . —2 1 .-
leading principal minors —2 < 0 and 1 1|7 1>0,s0dzis
negative definite, which means the point in question is a local

maximum.
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Three-variable Quadratic Forms

@ Similar conditions can analogously be obtained for a function of three
or more variables. Consider a quadratic form g with three variables
u1, up, and uz. Then:

q(ur, uo, u3) = di1(u?) + dia(urun) + diz(uruz) + doy (o ur ) + don(u3)

—|—d23(U2U3) + d31(U3U1) + d32(U3U2) + d33 u3 Z Z d,Ju,uJ

i=1j=
din dip diz uy
N
= [ up Uy U3 ] d21 d22 d23 u» =uDu
d31 d3p ds3 u3
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Three-variable Quadratic Forms

@ Now, there are three leading principal minors:

diy di dii dip di3

|D1| = d1 |D2| = D3| =| do1 dop d3
o1 dx

d31 d ds3

@ The sufficient condition for positive definiteness (local minimum) is
that |D1| >0, |D2| > 0, and | D3| > 0.

@ The sufficient condition for negative definiteness (local maximum) is
that ’D1| <0, ‘Dz’ > 0, and |D3| <0.
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Examples

@ Find and classify the critical points of the function
f(x,y,z) =x>+y?+72° + xy +3yz.
» fi=2x+y, f,=2y+x+3z, f,=14z+43y. It is easy to see that the
only critical point is (0,0,0).
» fx=2,fy =2, f,=14 iy =fx =1 fo=1x=0, f,=1f, =3 We
then compute the Hessian:

fxx f:vx fzx 2 1 0

fx fyy fz |=]1 2 3

fox fy fz 0 3 14
) 1 2 1 0

>|D1|:2>0,|D2|:’1 2‘:4—1:3>0,|D3|: 12 3 |=
0 3 14
2 3 1 3 1 2

2| 3 14‘1 0 14'+0 0 3‘—2(289)14_24>0

» So, since the Hessian is positive definite, the only critical point (0,0,0)
is a local minimum.
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Examples

@ Find the extreme values of
f(x1,%2,X3) = 2 = —x3 + 3x1X3 + 2x2 — X3 — 3x3

» 1= —3X1 +3x3, h =2—2x2, f3 =3x; — b6x3
» So, we have a system of three equations:

Bl

32 +3x3=0—x3=xF > x3= (%)2:
2— 2X2 0— X2 = 1
3x1 —6x3=0—x1 :2X3—>X1:2X12—>x1 :%
» Additionally, since x; —2x3 =0, (0,1,0) must also be a solution, so the
two roots are (0,1,0) and (3,1,1).
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Examples

@ fi1 =—6x1, foo=—2, f33=—6, fio=hHh1 =0, f13=1f1 =3,
fr3=1f2=0

@ So, the Hessian is

—-6x3 0 3
0 -2 0
3 0 -6

e |D1](0,1,0) =0, so we already know that the point (0,1,0) is
indefinite, and in fact is not an extremum at all.

-3 0
° |D1|(2, ,4) -3<0, |D2|(2, ,4) 0 —o ’:6>0,
-3 0 3
-2 0 0 -2
3 0 -6

—36+18=-18<0
1

@ The Hessian is negative definite, so the point (%,1,1) is @ maximum.
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Profit Maximization Example

o Consider a competitive firm with the following profit function:
T=R-C=PQR—-wL—-rK

@ where P is price, @ is output, L is labor, K is capital, w is wage, r is
the rental rate of capital. Since the firm is in a competitive market,
P, w, and r are exogenous, while L, K, and @ are endogenous.
However, Q is also function of K and L via the Cobb-Douglas
production function

Q=Q(K,L)=L*KP

@ Assume that there are decreasing returns to scale where oo = f8 < %
Substituting in, the objective function becomes

n(K,L) = PLYK®* — wL— rK
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Profit Maximization Example

@ First order conditions:

371:_ o—1 _ _ w 1-a %
o = PaL™ 'K —w_0—>K_<mL )
g—;:PaL“K“‘l—rzo
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Profit Maximization Example

@ Before we continue, let's make sure that these equations for L and K
do actually give us a maximum.

Tl 7Tk
KL 7KK

|Hl =

B ‘ Po(o—1)L*2K*  Pa?L%tK* 1
| Pa?L4lket Pa(a—1)L*K*2
_ P2a2((x _ 1)2 (202202 p2 o4 200-2 202
_ P2oc2(oc2 —2a+ 1)L2(x72 K20-2 _ p2 4202 202
— P2062 L2a—2 K2a—2(1 _ 20‘) + P2 064 L2a—2 K2a—2 _ P2a4L2a—2 K2a—2
= P22 2022021 _0q)

o |Hi| = Pa(a—1)L¥2K* <0 and |H| > 0, so the hessian is negative
definite, so L and K as defined by the FOC's represents the optimal
quantities that will maximize profit.
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Profit Maximization Example

@ Plugging in the FOC for L into the FOC for K, we get
W 17a-1
Pal®K*1—r=pal® [(—Ll‘“) ] —r
Pa

o—

—0 a(w\E ] w o\ ‘e |,
=0— Pal [(—) La] _Pa< ) L« —r

2 2
o— _a-1 —ac42a—1+o a—1
a Tl a

w a —r

:(P(x)aL a W a —r:O—)(P(X)éL2aJ1Wa771:r—>

(Poc)é Wil 8% = (P()tw"‘_lr_o‘)ﬁ
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Profit Maximization Example

1
o Similarly, we can find that K* = (Por® tw=%) T2

@ Then, we can find the optimal quantity expressed only as a function
of the exogenous parameters:

Q" = (L)*(K")* = (P()two‘*lr*"‘)ﬁ (Par“ilwfa)ﬁ =

a2P2\ T2
- wr

Jijian Fan (UC Santa Cruz) ECON 186 13 /26



Constrained Optimization

@ Up to this point, we have considered only problems of unconstrained
optimization, that is, where an economic entity chooses the values of
some variables to optimize a dependent variable with no restriction.

@ However, consider a firm which seeks to maximizes profits with the
production of two goods, but faces a production quota where
Q1+ Q> =950. In this case, the choice variables are not only
simultaneous, but also dependent. The solving of this problem is
called constrained optimization.

@ As another example, consider that a consumer wants to maximize
their utility, given by

U=x1x+2x1

@ However, the consumer does not have an infinite amount of money,
so they cannot buy an infinite amount of goods as would maximize
their utility. Instead, the individual only has $60 to spend and x;
costs $4 and x» costs $2, so their budget constraint is

4x1+2xp =60
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Constrained Optimization

@ So, the individual's optimization problem can be stated as
max U = xyxo +2x1 subject to

dx1 4+ 2x2 = 60

@ We call this constraint a budget constraint and it restricts the domain
of the utility function, and as a result, the range of the objective
function.

@ In an unconstrained setting, x; and x» could take any value > 0, but
now the pair (x1,x2) must lie on the budget line.

%

b
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Constrained Optimization

@ The first method of solving constrained optimization is that of

substitution. In the above example, we can take the budget constraint

and find:
i 60 — 4X1

2
@ Plug into the utility function to get:

X2 =30—2x1

U = x1 (30— 2x1) 4 2x1 = 32x1 — 2x3
U

I =32—-4x1=0—x{ =8
xo=30-2(8) =14
U* = 8(14) +2(8) = 128

2
dUT — —4 <0, so x; = 8 represents a

@ Also, we can easily see that 7> =
1

constrained maximum of U.
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Constrained Optimization

@ Another method, which is generally much more useful, especially for
more complex and more than one constraint is called the
Lagrange-multiplier method.

@ The Lagrangian function for the previous example is:

L=x1x0+2x1+ A (60 —4x; —2x7)

@ A is called the Lagrange multiplier (which we will discuss later). To
solve the Lagrangian, we treat A as a choice variable, so that the
derivative with respect to A will automatically satisfy the constraint.
The first order conditions are:

oL >
O 22— =0 =2

8x1
aL X1
aX2 —X]_—2l—0—>l—§
aL
5260—4X1—2X2:0
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Constrained Optimization

2 2
X2:_ = % = Marginal rate of substitution — x; = X2;_

A=A—

2
60—4(X2; >—2X2:0—>60—4X2—4:o—>4><2:56—>x;:14

60—4x3—28=0—4x3 =32 = x; =8
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Lagrangian Method
@ Given an objective function
z="f(x,y)
@ subject to
g(x,y)=c
@ we can write the Lagrangian function as
L=f(x,y)+A[c—g(x,y)]
@ Then, the first order conditions are
Lp:c—glxy)=0
Ly:fii—Agy=0
L,:f,—Ag, =0
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Lagrangian Example

@ A firm’s production function is y = \/x ++/z and input prices are wy
and w,. Find the quantities of x and z that minimize cost subject to
the production function.

L=wx+w,z—A(Vx+vVz—y)

oL 1 1
x D Wy — Elx_% =0— wy = Elx_% — A =2WXX%
oL 1 1
5 t Wy — 5&2_% =0— w,= Elz_% — A= 2sz%
1 11w, w2
2Wyx? =2W,22 5 X2 =22 — S X=Z—%
Wiy w
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Lagrangian Example

1 1 1
z2wy+z2wy  z2(wy +w;)

1 W, 1
y=Vx+Vz=z2_%4272 = =
Wy Wy Wy
2.2
1 w. w.
_>z2 :;‘y_)z*zx—yz
Wy + Wy (wx + wy)

Plugging back into the marginal rate of technical substitution,

*_Gﬂil)ﬁz_ﬁﬁ_
(wx+wz)? ) w2 (wx+w;)?
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Lagrangian Multiplier Interpretation

@ The optimal value of L depends on 1*(c), x*(c), y*(c), so
L'=fx"y")+ 24" [e—g(x"y7)]

dL* Ly ax* . L dyt v g AAT
I:(fx—7L gx)ﬁ"‘(’ry—7L 8y) e +[c—g(x",y)] e

@ However, the first order conditions tell us that ¢ = g (x*,y*),
fc =A%gx, and f, = A*g,, so the first three terms on the right hand
side drop out and we are left with

drs
dc

+A*

A{*

@ So, the value of the Lagrange multiplier at the solution of the
problem is a measure of the effect of a change in the constraint via
the parameter ¢ on the optimal value of the objective function.
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Lagrangian-Method with Multiple Constraints

@ The Lagrange-multiplier method is equally applicable when there is
more than one constraint, we just need a Lagrange-multiplier for each
constraint.

e Consider the function f (x1,x2,...,X,) subject to two constraints:
g(x1,x2,....,xp) = ¢ and h(x1,x2,...,x,) = d. Then, the Lagrangian
function can be written as:

L=1(x1,x2,..c,Xn) +A[c— g (X1, %250, Xn)]| + 1 [d — h (X1, X2, .0, Xn)]

@ Then, the first-order conditions will consist of the following (n+2)
simultaneous equations:

Ly =c—g(x1,x2,...,xn) =0

L/J = d—h(Xl,X2,---,Xn) =0
Li=fi—Agi—uhi=0 (i=1,2,....n)
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Multi-Constraint Lagrangian Example
e Find the maximum and minimum of f(x,y,z) =4y — 2z subject to
2x —y —z =2 and x?+ y? = 1. The Lagrangian function is:
L=4y—2z+A(2-2x+y+z)+pu(1-x*—y?)

@ The first order conditions are:

Ly:2—2x+y+z=0 (1)
Ly:1-x>—y?=0 (2)
Ly:—2A—2xu=0 (3)
L, 4+A—2yu=0 (4)

L,: —24+A=0 (5)
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Multi-Constraint Lagrangian Example

(5)=>A=2
@ Plugin A =2 to (3) and (4):
(—3)—>—2(2)—2x,u:0—>—2xu:4—>x:—5 (6)

(4)—>4+2—2yu:0—>6:2yu—>y:% (7)

@ Plugin (6) and (7) to (2):

2 2
() (3) —omim B avm
u u u
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Multi-Constraint Lagrangian Example

@ So there are two possible solutions, where u = /13 and u = —/13.
o Case 1. u=+13

» Plugging back in to (6), (7), and then (2), we get x=——%=, y = \/%

and 0 = 2+2(r>+r+z—>z —2— \/iﬁ

o Case 2: u=-13
» Plugging back in to (6), (7), and then (2), we get x = \/% y= —\/%,
—2_9o(_2_ -
and 0=2-2(Z) - Ftzoz=-2+ 1
@ These are both potential optimum. To confirm, we must use the
second order conditions we will learn in the next lecture.
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