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Partial Differentiation

Consider a function y = f (x1,x2, ...,xn) where the x ′i s are all
independent, so each can vary without affecting the others.
Suppose that only x1 changes, then we will have the difference
quotient

∆y
∆x1

=
f (x1 + ∆x1,x2, ...,xn)− f (x1,x2, ...,xn)

∆x1

Then, the partial derivative with respect to the ith argument of
f (x1,x2, ...,xn) is

fi ≡
∂y
∂xi
≡ lim

∆xi → 0
∆y
∆xi

In order to take the partial derivative with respect to xi , we must treat
all other x ′s as constant, and then the process is exactly the same.
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Examples of Partial Differentiation

Example 1: Let y = f (x1,x2) = 3x2
1 + x1x2 +4x2

2 . Find the partial
derivatives with respect to x1 and x2.

I ∂y
∂x1
≡ f1 = 6x1 + x2 and ∂y

∂x2
≡ f2 = x1 +8x2

Example 2: Let y = f (u,v) = (u +4)(3u +2v). Find the partial
derivatives with respect to u and v .

I fu = (u +4)(3) + (3u +2v)(1) = 3u +12+3u +2v = 6u +2v +12 and
fv = (u +4)(2) + (3u +2v)(0) = 2(u +4)

Example 3: Let y = f (u,v) = 3u−2v
u2+3v . Find the partial derivatives with

respect to u and v .
I fu = (u2+3v)(3)−(3u−2v)(2u)

(u2+3v)2 = 3u2+9v−6u2+4uv
(u2+3v)2 = −3u2+4uv+9v

(u2+3v)2 and

fv = (u2+3v)(−2)−(3u−2v)(3)

(u2+3v)2 = −2u2−6v−9u+6v
(u2+3v)2 = −2u2−9u

(u2+3v)2 = −u(2u+9)

(u2+3v)2
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Gradient Vector

The gradient vector is the collection of all partial derivatives of a
function f .
Notation: To denote a gradient, we use the word “grad” or more
commonly, an upside down capital Delta, ∇.
Example 1: If we take the previous example where
y = f (u,v) = 3u−2v

u2+3v , then we showed the gradient vector would be

∇y = grad f (u,v) = (fu, fv ) =

(
−3u2 +4uv +9v

(u2 +3v)2 ,
−u(2u +9)

(u2 +3v)2

)
Example 2: Suppose we have a utility function which depends only on
consumption and leisure, where u(c, l) = cσ

σ
+ α

lγ

γ

I uc = cσ−1 and ul = α(l γ−1). So the gradient vector is
∇u(c, l) = (uc ,ul ) =

(
cσ−1,α(l γ−1)

)
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Jacobian Determinants
The Jacobian matrix is a matrix of partial derivatives of a series of
differentiable functions. Specifically, each row of the Jacobian matrix
is the gradient vector of a function.
Suppose we have n differentiable functions in n variables:

y1 = f 1(x1,x2, ...,xn)
y2 = f 2(x1,x2, ...,xn)
................................
yn = f n(x1,x2, ...,xn)

The Jacobian determinant, often referred to as “The Jacobian” is the
determinant of the Jacobian matrix. The Jacobian determinant for
the above system of equations is

|J | ≡
∣∣∣∣∂ (y1,y2, ...,yn)

∂ (x1,x2, ...,xn)

∣∣∣∣≡
∣∣∣∣∣∣∣

∂y1/∂x1 ... ∂y1/∂xn
...

...
∂yn/∂x1 ... ∂yn/∂xn

∣∣∣∣∣∣∣≡
∣∣∣∣∣∣∣

f 1
1 ... f 1

n
...

...
f n
1 ... f n

n

∣∣∣∣∣∣∣
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Jacobian Determinants

Example: Let y1 = 2x1 +3x2 and y2 = 4x2
1 +12x1x2 +9x2

2

I ∂y1
∂x1

= 2, ∂y1
∂x2

= 3, ∂y2
∂x1

= 8x1 +12x2, ∂y2
∂x2

= 12x1 +18x2

I |J | ≡

∣∣∣∣∣ ∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

∣∣∣∣∣=

∣∣∣∣ 2 3
8x1 +12x2 12x1 +18x2

∣∣∣∣=

2(12x1 +18x2)−3(8x1 +12x2) = 24x1 +36x2−24x1−36x2 = 0

What does a Jacobian determinant of 0 mean? Recall that when a
determinant is equal to 0, there is linear dependence among the
equations. Similarly, if a Jacobian determinant is equal to 0, there is
functional dependence among the system of equations. Functional
dependence could be a linear or nonlinear relationship.

I In fact, the previous result is simply a special case of the Jacobian
criterion of functional dependence (read on page 176 in Chiang and
Wainwright).

In this case, y2 = y2
1 , so y1 and y2 are nonlinearly dependent.
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Applications and Uses of the Jacobian Determinant

Applications of Jacobian Matrices and the Jacobian Determinant
I The Jacobian determinant is used in the process of changing variables

from cartesian to polar coordinates when evaluating double or higher
integrals.

I The Jacobian matrix is the best linear approximation to a differentiable
function near a given point. So, we can think of the Jacobian as the
derivative of a multivariate function.

I The inverse of the Jacobian matrix of a function is the Jacobian matrix
of the inverse of that function. (We will come back to this shortly).

I The behavior of a system near a stationary point is related to the
eigenvalues of the Jacobian matrix of the system.

I Jacobians are closely related to Hessians, which play a crucial role in
the second order conditions of constrained optimization.
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Differentials and Derivatives

Recall that we defined the derivative as

dy
dx = f ′(x)dx

Then, consider dx as an independent variable, and dy an independent
variable, and multiply through to get

dy = f ′(x)dx
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Differentials and Derivatives

The tangent line at point x on y = f (x) has slope f ′(x). If you move
from x to x + dx , the tangent line rises by dy = f ′(x)dx .
The actual change is ∆y = f (x + dx)− f (x). So, dy is an
approximation to ∆y which gets closer as dx → 0.
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Differentials and Derivatives

dx and dy are called the differentials of x and y , respectively.
Economic application: Recall that the formula for the price elasticity
of demand is εd ≡ ∆Q/Q

∆P/P
I However, we have just learned that the differential dQ can serve as an

approximation to ∆Q. Then, we can get an approximation elasticity
known as the point elasticity of demand, which we can arrange as
follows:

εd ≡
dQ/dP
Q/P

I The numerator is now the derivative of Q with respect to P, which we
call the marginal function. Similarly, the denominator is the average
function. In fact, this relationship holds for any y and x of a function
y = f (x) so that:

εyx =
dy/dx
y/x =

marginal function
average function
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Differentials and Derivatives

Example: Find the point elasticity of supply εs from the supply
function Q = P2 +7P and determine whether the supply is elastic at
P = 2.

dQ
dP = 2P +7

Q
P = P +7

εs =
dQ/dP
Q/P =

2P +7
P +7

I When P = 2, εs = 2(2)+7
2+7 = 11

9 , so the supply is elastic at P = 2.
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Total Differentials

The concept of the differential can easily be extended to the case of n
independent variables. Suppose we have a function f (x1,x2, ...,xn).
The total differential is:

df =
∂ f
∂x1

dx1 +
∂ f
∂x2

dx2 + ...+
∂ f
∂xn

dxn

= f1dx1 + f2dx2 + ...+ fndxn =
n

∑
i=1

fidxi

How is this different from a derivative? With a derivative, all of the
dx ′i s are very close to 0, but here they do not have to be, so we can
evaluate changes in the x ′i s that are not necessarily extremely small.
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Total Differential Example

Example: Let S = S(Y , i) be a saving function where S represents
savings, Y is national income, and i is the interest rate. Find the
total differential of S.

I Suppose S(Y , i) = 1
2Y +3i . Then

F ∂S
∂Y = 1

2 and ∂S
∂ i = 3.

F dS = SY dY +Si di = 1
2 dY +3di
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Rules of Differentials

Let k be a constant and u and v be two functions of the variables x1
and x2. Then the following rules are valid:
Rule I: dk = 0
Rule II: d(cun) = cnun−1du
Rule III: d(u±v) = du±dv
Rule IV: d(uv) = vdu + udv
Rule V: d( u

v ) = 1
v2 (vdu−udv)

Rule VI: d(u±v ±w) = du±dv ±dw
Rule VII: d(uvw) = vwdu + uwdv + uvdw
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Total Differential Example

Find the total differential of y = f (x1,x2) = x1+x2
2x2

1

Method 1: Find the partial derivatives and plug into the formula
dy = f1dx1 + f2dx2

I f1 =
2x2

1 (1)−(x1+x2)(4x1)

(2x2
1 )2 =

2x2
1−4x2

1−4x1x2
4x4

1
=− x1+2x2

2x3
1

and f2 = 1
2x2

1
. So

dy =− x1+2x2
2x3

1
dx1 + 1

2x2
1

dx2

Method 2: Use the rules of differentials.

dy =
1
4x4

1

[
2x2

1 d(x1 + x2)− (x1 + x2)d(2x2
1 )
]

=
1
4x4

1

[
2x2

1 (dx1 + dx2)− (x1 + x2)4x1dx1
]

=
1
4x4

1

[
−2x1(x1 +2x2)dx1 +2x2

1 dx2
]

=−x1 +2x2
2x3

1
dx1 +

1
2x2

1
dx2
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Total Derivatives

Until now, we have discussed partial derivatives which allow us to
measure the instaneous change from one variable while holding all
other variables constant.
However, suppose that we have two functions, y = f (x ,w) and
x = g(w), or alternatively, we can write these as the composite
function y = f [g(w),w ].
Therefore, when w changes, it can affect y directly since y is a
function of w , as well as indirectly via a change in x .
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Total Derivatives

We can obtain the indirect effect by using a slight extension to the
Chain Rule we learned previously, which would be fx dx

dw and the direct
effect is simply fw .

I So the total derivative is

dy
dw = fx

dx
dw + fw =

∂y
∂x

dx
dw +

∂y
∂w

.

Alternatively, we can take the total differential of y = f (x ,w) to
obtain dy = fxdx + fw dw and then divide by dw to obtain the same
result.
Note that while ∂y

∂w is the partial derivative of y with respect to w ,
dy
dw is the total derivative of y with respect to w .
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Total Derivatives

Example: Find the total derivative dz
dx , given z = f (y ,x) = 3y −x2

and y = g(x) = 2x2 + x +4

dz
dx =

∂z
∂y

dy
dx +

∂z
∂x = 3(4x +1)−2x = 10x +3

Now suppose we have a function y = f (x1,x2,w) where
{

x1 = g(w)

x2 = h(w)

I In this case, a change in w can actually affect y directly, indirectly
through g and then through f , and through h and then f .

I To find the total derivative, first take the total differential then divide
through by w

dy = fx1dx1 + fx2dx2 + fw dw → dy
dw =

∂y
∂x1

dx1
dw +

∂y
∂x2

dx2
dw +

∂y
∂w
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Total Derivatives

Let Q = LαK β tγ be a Cobb-Douglas production function where L
represents labor, K represents time, and t represents time. Since K
and L can change over time, it is the case that L = L(t) = 20+ 1

2 t
and K = K (t) = 15+2t. Find the total derivative of this production
function.

dQ =
∂Q
∂L dL +

∂Q
∂K dK +

∂Q
∂ t dt→ dQ

dt =
∂Q
∂L

dL
dt +

∂Q
∂K

dK
dt +

∂Q
∂ t

= αLα−1K β tγ 1
2 + βK β−1Lαtγ (2) + LαK β

γtγ−1
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Why do we Care About Total Derivatives

Why do we care so much about total derivatives in economics other
than their apparent mathematical usefulness?
In economics, everything is related and changes in a given variable
not only affect many other variables, but often have a feedback loop
so that the variable that is affected also affects the original variable
that was changed (referred to as reverse causality in econometrics).

I For example, consider the interest rate (federal funds rate specifically).
Suppose there is an increase in the interest rate, then savings will
become more attractive and inevitably increase, capital will flow out of
other countries and back to the US (since treasuries now have a higher
yield), and the quantity of loans will decrease since loans are more
expensive. Although these are actually moving the economy in opposite
directions, it has been shown empirically that increasing the interest
rate significantly slows down the economy. So, if the economy slows
down past the point where the fed desires, they will then have to lower
the interest rate, and the cycle works in reverse.
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Implicit Functions

Suppose we have the function y = f (x) = 3x4. This is called an
explicit function because y is explicitly expressed as a function of x .
However, if we express the function as y −3x4 = 0, this function is
now an implicit function, since the explicit function is only implied.
We denote this by F (x ,y) = 0. Note that capital F is used to prevent
confusion with the lowercase f used to denote explicit functions.
Naturally, this can be extended to the case with more than two
arguments, F (y ,x1, ...,xm) = 0.
Clearly, any explicit function can become an implicit function simply
by moving over the left hand side, but implicit functions cannot
necessarily be written as explicit functions, which is why we must
know how to take the derivatives of implicit functions as well.
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Implicit Functions

Moreover, if we come upon an equation written implicitly, how can we
be sure that it actually is defining a function at all?

I Consider the implicit equation F (y ,x) = x2 + y2−9 = 0. Recall that
this represents a circle centered at the origin with radius 3. Therefore,
each x does not correspond with a unique value of y , so this is by
definition a relation, but not a function.

I However, if we restrict y only to nonnegative values, we can obtain
y =
√
9−x2 and if we restrict y only to nonpositive values, we can

obtain y =−
√
9−x2, which are functions. So, even though the

implicit relation is not a function on all points of its domain, it is a
function on some subset of its domain.
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Implicit Functions
So, how do we know whether an implicit function

F (y ,x1, ...,xm) = 0 (1)

actually does define a function

y = f (x1, ...,xm) (2)

The answer lies in the Implicit Function Theorem, which states the
following:

I Given (1), if (a) the function F has continuous partial derivatives
Fy ,F1, ...,Fm, and if (b) at a point (yo ,x10, ..,xm0) satisfying the
equation (1), Fy is nonzero, then there exists an m-dimensional
neighborhood of (x10, ...,xm0), N, in which y is an implicitly defined
function of the variables x1, ...,xm, in the form of (2). This implicit
function satisfies y0 = f (x10, ...,xm0). It also satisfies the equation (1)
for every m-tuple (x1, ...,xm) in the neighborhood N. Moreover, the
implicit function f has continuous partial derivatives f1, ..., fm.
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Implicit Functions
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The Implicit Function Rule

How do we find the derivative of an implicit function that we cannot
solve for explicitly?
Again, suppose that we have the equation F (y ,x1, ...,xm) = 0. Taking
the total differential we get

Fy dy + F1dx1 + F2dx2 + ...+ Fmdxm = 0 (3)

Additionally, taking the total differential of the explicit function
y = f (x1,x2, ..,xm), we get

dy = f1dx1 + f2dx2 + ...+ fndxn (4)

We can then substitute (4) into (3) and collect terms to obtain

(Fy f1 + F1)dx1 + (Fy f2 + F2)dx2 + ...+ (Fy fm + Fm)dxm = 0
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The Implicit Function Rule

Recall that the x ′i s can vary independently, so that the dx ′i s are
independent. Therefore, it must be the case that

Fy fi + Fi = 0 ∀i

So, the implicit function rule states that

fi ≡
∂y
∂xi

=− Fi
Fy

In the case of two variables, x and y , specified by the equation
F (x ,y) = 0, the implicit function rule states

fy ≡
dy
dx =−Fx

Fy
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The Implicit Function Rule Examples

Example 1: Let F (x ,y) = y −3x4 = 0. Find dy
dx .

dy
dx =−Fx

Fy
=−−12x3

1 = 12x3

Clearly, we could have easily moved y to the other side and solved the
explicit function just as we have been. But what if we can’t do this?
Example 2: Let F (y ,x ,w) = y3x2 + w3 + yxw −3 = 0. Find ∂y

∂x .
I Clearly, this equation is not easy to solve for y , but since Fy is nonzero

at least at some points, and Fy ,Fx , and Fw are continuous, the
derivative is meaningful and can be found using the implicit function
rule.

∂y
∂x =−Fx

Fy
=− 2y3x + yw

3y2x2 + xw
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