Homework Day 11 Solutions - ECON 186

Problem 1.

$$
E(X)=\sum_{x=1}^{\infty} x \frac{1}{x(x+1)}=\sum_{x=1}^{\infty} \frac{1}{x+1}=\infty
$$

Problem 2.

$$
E(X)=18\left(\frac{20}{50}\right)+19\left(\frac{22}{50}\right)+20\left(\frac{4}{50}\right)+21\left(\frac{3}{50}\right)+25\left(\frac{1}{50}\right)=18.92
$$

Problem 3.

a)

$$
\begin{gathered}
E(X)=\int_{0}^{1} x\left(x^{\frac{1}{2}}\right) d x=\int_{0}^{1} x^{\frac{3}{2}} d x=\left.\frac{2}{5} x^{\frac{5}{2}}\right|_{0} ^{1}=\frac{2}{5} \\
E\left(X^{2}\right)=\int_{0}^{1} x^{2}\left(x^{\frac{1}{2}}\right) d x=\int_{0}^{1} x^{\frac{5}{2}} d x=\left.\frac{2}{7} x^{\frac{7}{2}}\right|_{0} ^{1}=\frac{2}{7} \\
\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=\frac{2}{7}-\left(\frac{2}{5}\right)^{2}=\frac{2}{7}-\frac{4}{25}=0.12571428571
\end{gathered}
$$

b)

Problem 4.

$$
\begin{gathered}
\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=10-9=1 \\
\operatorname{Var}(Y)= \\
\operatorname{Cov}(X, Y)= \\
E\left(X Y^{2}\right)-[E(X)]^{2}=29-4=25 \\
\\
\rho(X, Y)=\frac{-6}{(1)(5)}=-\frac{6}{5}
\end{gathered}
$$

which is not possible since $-1<\rho(X, Y)<1$

Problem 5.

Recall that the Bernoulli distribution is given by the pmf

$$
f(x)=\operatorname{Pr}(X=x)= \begin{cases}p & \text { for } x=1 \\ q=1-p & \text { for } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

Then,

$$
\begin{gathered}
\psi(t)=E\left(e^{t x}\right)=p e^{t * 1}+q e^{t * 0}=p e^{t}+q \\
\psi^{\prime}(t)=p e^{t} \\
\psi^{\prime \prime}(t)=p e^{t} \\
E(X)=\psi^{\prime}(0)=p \\
E\left(X^{2}\right)=\psi^{\prime \prime}(0)=p \\
\operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=p-p^{2}=p(1-p)
\end{gathered}
$$

Interestingly, every moment of the Bernoulli distribution is equal to p.

Problem 6.

$$
\begin{gathered}
E(X)=5, E(Y)=3, \operatorname{Var}(X)=6, \operatorname{Var}(Y)=2, \operatorname{Cov}(X, Y)=10 \\
E(3 Y-2 X+7)=3 E(Y)-2 E(X)+E(7)=3(3)-2(5)+7=9-10+7=6 \\
\operatorname{Var}(5 X-Y+2)=25 \operatorname{Var}(X)+\operatorname{Var}(Y)+\operatorname{Var}(2)+2(5)(-1) \operatorname{Cov}(X, Y) \\
=25(6)+2-10(10)=52
\end{gathered}
$$

Problem 7.

a)

$$
\operatorname{Pr}(X \leq 3)=\operatorname{Pr}\left(\frac{X-1}{2} \leq \frac{3-1}{2}\right)=\operatorname{Pr}(Z \leq 1)=0.8413
$$

b)

$$
\begin{gathered}
\operatorname{Pr}(2<X<5)=\operatorname{Pr}\left(\frac{2-1}{2}<\frac{X-1}{2}<\frac{5-1}{2}\right)=\operatorname{Pr}\left(\frac{1}{2}<Z<2\right) \\
\\
=\operatorname{Pr}(Z<2)-\operatorname{Pr}\left(Z<\frac{1}{2}\right)=0.9772-0.6915=.2857
\end{gathered}
$$

c)

$$
\begin{aligned}
\operatorname{Pr} & (1 \leq-2 X+3 \leq 8)=\operatorname{Pr}(-2<-2 X<5)=\operatorname{Pr}\left(-\frac{5}{2}<X<1\right) \\
& =\operatorname{Pr}\left(\frac{-\frac{5}{2}-1}{2}<\frac{X-1}{2}<\frac{1-1}{2}\right)=\operatorname{Pr}(-1.75<Z<0) \\
& =\operatorname{Pr}(Z<0)-(1-\operatorname{Pr}(Z<1.75))=0.5-1+.9599=.4599
\end{aligned}
$$

