Homework Day 9 Solutions - ECON 186

Problem 1. Chiang and Wainwright 12.3 \#1(d)
1)
d) The bordered Hessian is

$$
|\bar{H}|=\left|\begin{array}{ccc}
0 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 0
\end{array}\right|=0\left|\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right|+\left|\begin{array}{cc}
-1 & 0 \\
-1 & 0
\end{array}\right|-\left|\begin{array}{cc}
-1 & 2 \\
-1 & 0
\end{array}\right|=-2
$$

So z is positive definite, which means that z^{*} is a minimum.
Problem 2. Chiang and Wainwright 12.5 \#1(c)
c) Recall that the Lagrangian function is

$$
L=(x+2)(y+1)+\lambda(130-4 x-6 y)
$$

Then, the bordered Hessian is

$$
|\bar{H}|=\left|\begin{array}{ccc}
0 & -4 & -6 \\
-4 & 0 & 1 \\
-6 & 1 & 0
\end{array}\right|=0\left|\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right|+4\left|\begin{array}{cc}
-4 & 1 \\
-6 & 0
\end{array}\right|-6\left|\begin{array}{cc}
-4 & 0 \\
-6 & 1
\end{array}\right|=24+24=48>0
$$

So U is negative definite and thus $U^{*}=(16+2)(11+1)=18(12)=216$ is a maximum.

Problem 3.

c. To find whether $x^{*}=y^{*}=\sqrt{\frac{16}{15}}$ are the maximum input levels for maximizing profits, we need to check the definiteness of the function. Then, if we let the constraint be the function $g(x, y)$ where $x=y$, then the bordered hessian is

$$
\begin{gathered}
\left|\begin{array}{ccc}
0 & g_{x} & g_{y} \\
g_{x} & L_{x x} & L_{x y} \\
g_{y} & L_{y x} & L_{y y}
\end{array}\right|=\left|\begin{array}{ccc}
0 & 1 & -1 \\
1 & 0 & 10 y \\
-1 & 10 y & 10 x
\end{array}\right|=0\left|\begin{array}{cc}
0 & 10 x \\
10 y & 10 x
\end{array}\right|-\left|\begin{array}{cc}
1 & 10 y \\
-1 & 10 x
\end{array}\right|-\left|\begin{array}{cc}
1 & 0 \\
-1 & 10 y
\end{array}\right| \\
=-10 x-10 y-10 y=-30 x
\end{gathered}
$$

At the optimal value, the bordered hessian is equal to

$$
-30 \sqrt{\frac{16}{15}}<0
$$

So the bordered hessian is positive definite, which means that this is actually a minimum! But I thought we were trying to find the maximum values! Well, if we plug the constraint into the price function, we can see that

$$
f(x, y)=5 x^{3}-16 x
$$

which means that as $x \rightarrow \infty$, profit actually goes to ∞, so the optimal value of each input is ∞ !

Problem 4.

The bordered Hessian looks like

$$
|\bar{H}|=\left|\begin{array}{ccccc}
0 & 0 & -2 & 1 & 1 \\
0 & 0 & -2 x & -2 y & 0 \\
-2 & -2 x & -2 \mu & 0 & 0 \\
1 & -2 y & 0 & -2 \mu & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right|
$$

Problem 5. Chiang and Wainwright 12.6 \#1(a, c, f), 6
1)
a)

$$
\sqrt{(j x)(j y)}=j=\sqrt{x y}
$$

So the function is homogeneous of degree one.
c)

$$
(j x)^{3}-(j x)(j y)+(j y)^{3}=j^{3} x^{3}-j^{2} x y+j^{3} y^{3}
$$

Since j cannot be factored out in any degree and leave the function as it was originally, this function is not homogeneous.
f)

$$
(j x)^{4}-5(j y)(j w)^{3}=j^{4}\left(x^{4}-5 y w^{3}\right)
$$

So the function is homogeneous of degree four.
6)
a)

$$
A(j K)^{\alpha}(j L)^{\beta}=A j^{\alpha} K^{\alpha} j^{\beta} L^{\beta}=A j^{\alpha+\beta} K^{\alpha} L^{\beta}
$$

So the Cobb-Douglas production function is homogeneous of degree $\alpha+\beta$. So, if $\alpha+\beta>1$, this means that if you increase K and $L j-f o l d$, then output will increase more than $j-f o l d$, which by definition is increasing returns to scale.
b) Similarly, if $\alpha+\beta<1$, then if you increase K and $L j-f o l d$, output will increase by less than j-fold, which by definition is decreasing returns to scale.
c) Taking the natural \log of both sides of the function, we have

$$
\ln Q=\ln A+\alpha \ln K+\beta \ln L
$$

Then,

$$
\begin{gathered}
\epsilon_{Q, K}=\frac{\partial(\ln Q)}{\partial(\ln K)}=\frac{\frac{\alpha}{K}}{\frac{1}{K}}=\alpha \\
\epsilon_{Q, L}=\frac{\partial(\ln Q)}{\partial(\ln L)}=\frac{\frac{\beta}{L}}{\frac{1}{L}}=\beta
\end{gathered}
$$

Problem 6.

First, set up the Lagrangian function

$$
L=-\left(x_{1}-4\right)^{2}-\left(x_{2}-4\right)^{2}+\lambda_{1}\left(4-x_{1}-x_{2}\right)+\lambda_{2}\left(9-x_{1}-3 x_{2}\right)
$$

The Kuhn-Tucker conditions are

$$
\begin{gathered}
L_{\lambda_{1}}: 4-x_{1}-x_{2}=0 \quad \lambda_{1} \geq 0 \\
L_{\lambda_{2}}: 9-x_{1}-3 x_{2}=0 \\
L_{x_{1}}:-2\left(x_{1}-4\right)-\lambda_{1}-\lambda_{2}=0 \\
L_{x_{2}}:-2\left(x_{2}-4\right)-\lambda_{1}-3 \lambda_{2}=0
\end{gathered}
$$

First, consider the cases for x_{1} and x_{2} :
Case 1: $x_{1}=0, x_{2}=0$
In this case, $C=-(0-4)^{2}-(0-4)^{2}=-32$
Case 2: $x_{1}=0, x_{2}>0$
$x_{2} \in[-\infty, 3]$, so the largest value C can take on is $C=-(0-4)^{2}-(3-4)^{2}=-16-1=-17$
Case 3:
$x_{1} \in[-\infty, 4]$, so the largest value C can take on is $C=-(4-4)^{2}-(0-4)^{2}=-16$
However, we can easily pick any two numbers that satisfy the constraints, such as $x_{1}=$ 2, $x_{2}=2$, where $C=-(2-4)^{2}-(2-4)^{2}=-8$, so none of these 3 cases can give a maximum. So it must be the case that $x_{1}>0, x_{2}>0$. So, let's now look at the first cases for λ_{1} and λ_{2}.

Case 1: $\lambda_{1}>0, \lambda_{2}>0$
By complementary slackness, $x_{1}+x_{2}-4=0$ and $x_{1}+3 x_{2}-9=0$. From the first constraint, $x_{1}=4-x_{2}$. Plugging in, $4-x_{2}+3 x_{2}-9=2 x_{2}-5=0 \rightarrow x_{2}^{*}=\frac{5}{2}$. Then, $x_{1}^{*}=4-\frac{5}{2}=\frac{3}{2}$. Plugging into the FOC for $L_{x_{1}},-2\left(\frac{3}{2}-4\right)-\lambda_{1}-\lambda_{2}=5-\lambda_{1}-\lambda_{2}=0 \rightarrow \lambda_{1}=5-\lambda_{2}$. Plugging into the FOC for $L_{x_{2}},-2\left(\frac{5}{2}-4\right)-\left(5-\lambda_{2}\right)-3 \lambda_{2}=3-5+\lambda_{2}-3 \lambda_{2}=0 \rightarrow \lambda_{2}=-1$, which violates the constraint that λ_{1} is nonnegative, so this cannot be a solution.

Case 2: $\lambda_{1}>0, \lambda_{2}=0$
By complementary slackness, $x_{1}+x_{2}-4=0$. Plugging in $\lambda_{2}=0$ into the FOC's for x_{1} and x_{2}, we get $-2\left(x_{1}-4\right)-\lambda_{1}=0 \rightarrow \lambda_{1}=-2\left(x_{1}-4\right)$ and $-2\left(x_{2}-4\right)-\lambda_{1}=0 \rightarrow \lambda_{1}=$ $-2\left(x_{2}-4\right)$. Then, $-2\left(x_{1}-4\right)=-2\left(x_{2}-4\right) \rightarrow x_{1}=x_{2}$. Plugging into the constraint, $x_{1}+x_{1}=4 \rightarrow x_{1}^{*}=x_{2}^{*}=2$. All the conditions are satisfied so this is a solution.

Case 3: $\lambda_{1}=0, \lambda_{2}>0$
By complementary slackness, $x_{1}+3 x_{2}-9=0$. Substituting $\lambda_{1}=0$ into the FOCs for x_{1} and x_{2} gives $-2\left(x_{1}-4\right)-\lambda_{2}=0 \rightarrow \lambda_{2}=-2\left(x_{1}-4\right)$ and $-2\left(x_{2}-4\right)-3 \lambda_{2}=0 \rightarrow \lambda_{2}=$ $-\frac{2}{3}\left(x_{2}-4\right)$. So, $-2\left(x_{1}-4\right)=-\frac{2}{3}\left(x_{2}-4\right) \rightarrow x_{1}-4=\frac{1}{3}\left(x_{2}-4\right) \rightarrow x_{1}=\frac{1}{3} x_{2}+\frac{8}{3}$. Plugging into the constraint, $\frac{1}{3} x_{2}+\frac{8}{3}+3 x_{2}-9=\frac{10}{3} x_{2}-\frac{19}{3}=0 \rightarrow x_{2}=\frac{19}{10}$. Plugging back in to the marginal rate of substitution between x_{1} and $x_{2}, x_{1}^{*}=\frac{1}{3}\left(\frac{19}{10}\right)+\frac{8}{3}=\frac{19}{30}+\frac{80}{30}=\frac{99}{30}=\frac{33}{10}$. However, this violates the constraint $x_{1}+x_{2} \leq 4$, so this cannot be a solution.

Case 4: $\lambda_{1}=0, \lambda_{2}=0$
The FOC for $L_{x_{1}}$ gives $-2\left(x_{1}-4\right)=0 \rightarrow x_{1}^{*}=4$ and the FOC for $L_{x_{2}}$ gives $-2\left(x_{2}-4\right)=$ $0 \rightarrow x_{2}^{*}=4$ which violates $x_{1}+x_{2} \leq 4$.

So the only values that maximize C are $x_{1}^{*}=x_{2}^{*}=2$. So the maximum value that can be obtained is $C=-8$.

