Homework Day 5 Solutions - ECON 186

Problem 1. Chiang and Wainwright 7.4 \#2(a, c), 7
2)
a)

$$
\begin{gathered}
f_{x}=2 x+5 \\
f_{y}=5 x-3 y^{2}
\end{gathered}
$$

c)

$$
\begin{gathered}
f_{x}=\frac{(x+y)(2)-(2 x-3 y)(1)}{(x+y)^{2}}=\frac{2 x+2 y-2 x+3 y}{(x+y)^{2}}=\frac{5 y}{(x+y)^{2}} \\
f_{y}=\frac{(x+y)(-3)-(2 x-3 y)(1)}{(x+y)^{2}}=\frac{-3 x-3 y-2 x+3 y}{(x+y)^{2}}=-\frac{5 x}{(x+y)^{2}}
\end{gathered}
$$

7)

a)

$$
\operatorname{grad} f(x, y, z)=\left(2 x, 3 y^{2}, 4 z^{3}\right)
$$

b)

$$
\operatorname{grad} f(x, y, z)=(y z, x z, x y)
$$

Problem 2. Chiang and Wainwright 7.6 \#1
1)
a)

$$
|J|=\left|\begin{array}{cc}
6 x_{1} & 1 \\
\left(36 x^{2}+12 x_{1} x_{2}+48 x_{1}\right) & \left(6 x_{1}^{2}+2 x_{2}+8\right)
\end{array}\right|=0
$$

So, the functions are dependent.
b)

$$
|J|=\left[\begin{array}{cc}
6 x_{1} & 4 x_{2} \\
5 & 0
\end{array}\right]=-20 x_{2}
$$

The determinant is nonzero, so the functions are independent.
Problem 3. Chiang and Wainwright 8.1 \#6
6)
a) The price elasticity of demand is

$$
\epsilon^{d}=\frac{\partial Q}{\partial P}\left(\frac{P}{Q}\right)
$$

where the partial derivative with respect to price is

$$
\frac{\partial Q}{\partial P}=-2
$$

and $Q=100-2(20)+0.02(5000)=160$. Therefore,

$$
\epsilon^{d}=(-2) \frac{20}{160}=-\frac{1}{4}
$$

b) The income elasticity of demand is

$$
\eta=\frac{\partial Q}{\partial Y}\left(\frac{Y}{Q}\right)
$$

where the partial derivative with respect to income is

$$
\frac{\partial Q}{\partial Y}=0.02
$$

Substituting the relevant values

$$
\eta=(0.02) \frac{5000}{160}=0.625
$$

Problem 4. Chiang and Wainwright 8.2 \#7(a)
7)
a)

$$
\begin{gathered}
U_{x}=-15 x^{2}-12 y \\
U_{y}=-12 x-30 y^{4} \\
d U=-\left(15 x^{2}+12 y\right) d x-\left(12 x+30 y^{4}\right) d y
\end{gathered}
$$

Problem 5. Chiang and Wainwright $8.3 \# 2$
2)
a)

$$
d y=\frac{\left(x_{1}+x_{2}\right) d x_{1}-x_{1}\left(d x_{1}+d x_{2}\right)}{\left(x_{1}+x_{2}\right)^{2}}=\frac{x_{2} d x_{1}-x_{1} d x_{2}}{\left(x_{1}+x_{2}\right)^{2}}
$$

b)

$$
d y=\frac{\left(x_{1}+x_{2}\right)\left(2 x_{2} d x_{1}+2 x_{1} d x_{2}\right)-2 x_{1} x_{2}\left(d x_{1}+d x_{2}\right)}{\left(x_{1}+x_{2}\right)^{2}}=\frac{2 x_{2}^{2} d x_{1}+2 x_{1}^{2} d x_{2}}{\left(x_{1}+x_{2}\right)^{2}}
$$

Problem 6. Chiang and Wainwright 8.4 \#1
1)
a)

$$
\frac{d z}{d y}=z_{x} \frac{d x}{d y}+z_{y}=(5+y) 6 y+x-2 y=28 y+6 y^{2}+x=28 y+9 y^{2}
$$

b)

$$
\frac{d z}{d y}=4 y-\frac{8}{y^{3}}
$$

c)

$$
\frac{d z}{d y}=-15 x+3 y=108 y-30
$$

Problem 7. Chiang and Wainwright $8.5 \# 2(\mathrm{a}, \mathrm{c}), 6$
2)
a)

$$
\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}=-\frac{6 x+2 y}{12 y^{2}+2 x}
$$

c)

$$
\frac{d y}{d x}=-\frac{f_{x}}{f_{y}}=-\frac{14 x+2 y^{2}}{36 y^{3}+4 x y}
$$

6) Point $(x=1, y=2, z=0)$ satisfies the given equation. Since the three derivatives $F_{x}=2 x+3 y, F_{y}=3 x+2 z+2 y, F_{z}=2 y+2 z$ all exist and are continuous, and $F_{z}=4 \neq 0$ at the given point, an implicit function $z=f(x, y)$ is defined. At the given point, we have

$$
\begin{gathered}
\frac{\partial z}{\partial x}=-\frac{2 x+3 y}{2 y+2 z}=-2 \\
\frac{\partial z}{\partial y}=-\frac{3 x+2 z+2 y}{2 y+2 z}=-\frac{7}{4}
\end{gathered}
$$

