ECON 186 Class Notes: Linear Algebra

Jijian Fan

Singularity and Rank

- As discussed previously, squareness is a necessary condition for a matrix to be nonsingular (have an inverse). The sufficient condition is that the rows and columns must be linearly independent.
- Formally, a matrix A is nonsingular if and only if it is square and its rows and columns are linearly independent.
- Example: Suppose we have the equation system $A x=d$ taking the form $\left[\begin{array}{cc}10 & 4 \\ 5 & 2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}12 \\ 6\end{array}\right]$.
- Clearly, the first row is just 2 times the second, so the rows are linearly dependent. In effect, this reduces the system to just one equation with an infinite number of solutions.
- So, in order for a system of equations to have a unique solution, all rows must be linearly independent, therefore the rows of a matrix must be linearly independent to have an inverse.

Rank and Row Reduction

- The rank of a matrix is the maximum number of linearly independent rows (and columns) in a matrix.
- The rank of an $m \times n$ matrix can be at most m or n, whichever is smaller.
- To determine the rank of a matrix (and to solve systems of equations in general), we use elementary row operations to reduce a matrix into row echelon form, where we can easily tell how many rows are linearly independent.
- The number of linearly independent rows is given by the number of nonzero rows after putting a matrix into row echelon form.

Rank and Row Reduction

- A matrix is in row echelon form if:
- All nonzero rows are above any rows of all zeroes.
- The leading coefficient of a nonzero row is always strictly to the right of the leading coefficient of the row above it.
- All entries in a column below a leading entry are zeroes.

Rank and Row Reduction

- Example of a matrix in row echelon form:

$$
\left[\begin{array}{ccccc}
1 & a_{0} & a_{1} & a_{2} & a_{3} \\
0 & 0 & 2 & a_{4} & a_{5} \\
0 & 0 & 0 & 1 & a_{6}
\end{array}\right]
$$

- The elementary row operations on a matrix are as follows:
- 1. Interchange of any two rows in the matrix.
- 2. Multiplication of a row by any scalar $k \neq 0$.
- 3. Addition of k times any row" to another row.

Rank and Row Reduction

- Example 1: Let

$$
A=\left[\begin{array}{ll}
3 & 1 \\
0 & 2
\end{array}\right] \stackrel{2}{\rightarrow}\left[\begin{array}{ll}
1 & \frac{1}{3} \\
0 & 2
\end{array}\right] \stackrel{2}{\rightarrow}\left[\begin{array}{ll}
1 & \frac{1}{3} \\
0 & 1
\end{array}\right] \stackrel{3}{\rightarrow}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Interestingly, A reduces to the identity matrix. Since the echelon form has 2 nonzero rows, the rank of the matrix is 2 . Is A nonsingular?

Rank and Row Reduction

- Example 2: Find the rank of the matrix $A=$
$\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & 4\end{array}\right]$
$A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & 4\end{array}\right] \xrightarrow[\rightarrow]{1}\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & -1 & 3 \\ 0 & 2 & -1 \\ 1 & 1 & 4\end{array}\right] \stackrel{\rightarrow}{\rightarrow}\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 2 & -1 \\ 1 & 1 & 4\end{array}\right]$
$\xrightarrow[\rightarrow]{3}\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 2 & -1 \\ 0 & 1 & 3\end{array}\right] \xrightarrow[\rightarrow]{3}\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 3\end{array}\right] \xrightarrow[\rightarrow]{3}\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 4\end{array}\right]$
$\xrightarrow{3}\left[\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$

Rank and Row Reduction

- This matrix in echelon form has 3 nonzero rows, so the rank of the matrix is 3 . Is the matrix nonsingular?
- By definition, for an $n \times n$ matrix to be nonsingular, it must have n linearly independent rows, and thus have rank n. This means that for a matrix to be nonsingular, the echelon form of the matrix must have no zero rows.

Determinants

- A determinant is a uniquely defined scalar associated with a matrix, which is only defined for square matrices. The determinant of A is denoted as $|A|$.
- Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$. Then, $|A|=\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}$
- Example: Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] .|A|=\left|\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right|=1(4)-2(3)=-2$.
- Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] .|A|=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=$ $a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|=$ $a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}$
- $\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$ is an example of a subdeterminant, and is the minor of the element a_{11}. It is denoted by $\left|M_{11}\right|$.

Evaluating an nth-Order Determinant

- In general, the symbol $\left|M_{i j}\right|$ denotes the minor obtained by deleting the i th row and j th column of a determinant.
- A cofactor, denoted by $\left|C_{i j}\right|$ is a minor with a prescribed algebraic sign attached to it. If the sum of the subscripts i and j in the minor $\left|M_{i j}\right|$ is even, the cofactor takes the same sign as the minor. If it is odd, the cofactor takes the opposite sign. In short,

$$
\left|C_{i j}\right| \equiv(-1)^{i+j}\left|M_{i j}\right|
$$

Example of 3×3 Determinant

- Let $A=\left[\begin{array}{lll}2 & 1 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$.

$$
\begin{aligned}
& |A|=\left|\begin{array}{lll}
2 & 1 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right|=2\left|\begin{array}{ll}
5 & 6 \\
8 & 9
\end{array}\right|-1\left|\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right|+3\left|\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right|= \\
& 2(5)(9)-2(6)(8)-1(4)(9)+1(6)(7)+3(4)(8)-3(5)(7)= \\
& 90-96-36+42+96-105=-9
\end{aligned}
$$

- We can see that $M_{11}=\left|\begin{array}{ll}5 & 6 \\ 8 & 9\end{array}\right|, M_{12}=\left|\begin{array}{ll}4 & 6 \\ 7 & 9\end{array}\right|, M_{13}=\left|\begin{array}{ll}4 & 5 \\ 7 & 8\end{array}\right|$.

Since $1+1=2$ and $1+3=4$ are even, $\left|M_{11}\right|=\left|C_{11}\right|$ and $\left|M_{13}\right|=\left|C_{13}\right|$. However, since $1+2=3$ is odd, $\left|M_{12}\right|=-\left|C_{12}\right|$, which is why there is a negative sign before the second cofactor.

3×3 Determinants

- So, we can write a third-order determinant (determinant of a 3×3) matrix as:
- $|A|=a_{11}\left|M_{11}\right|-a_{12}\left|M_{12}\right|+a_{13}\left|M_{13}\right|=$

$$
a_{11}\left|C_{11}\right|+a_{12}\left|C_{12}\right|+a_{13}\left|C_{13}\right|=\sum_{j=1}^{3} a_{1 j}\left|C_{1 j}\right|
$$

- Thus, the determinant of any square matrix B of size $n \times n$ can be expressed as

$$
|B|=\sum_{j=1}^{n} a_{i j}\left|C_{i j}\right|
$$

Properties of Determinants

- The interchanging of rows and columns does not affect the determinant of a matrix. That is, $|A|=\left|A^{\prime}\right|$.

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=\left|\begin{array}{ll}
a & c \\
b & d
\end{array}\right|=a d-b c
$$

- The interchanging of any two rows will alter the sign, but not the numerical value of the determinant

$$
\left|\begin{array}{ll}
c & d \\
a & b
\end{array}\right|=c b-a d=-(a d-b c)
$$

Properties of Determinants

- The multiplication of any one row by a scalar k will change the value of the determinant by a multiple of k.

$$
\left|\begin{array}{cc}
k a & k b \\
c & d
\end{array}\right|=k a d-k b c=k(a d-b c)
$$

- The addition of a multiple of any row to another row will leave the value of the determinant unaltered.

$$
\left|\begin{array}{cc}
a & b \\
c+k a & d+k b
\end{array}\right|=a(d+k b)-b(c+k a)=a d-b c=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|
$$

Value of the Determinant and Nonsingularity

- If one row is a multiple of another row, the value of the determinant will be zero.
- Example:

$$
\left|\begin{array}{cc}
5 a & 10 b \\
a & 2 b
\end{array}\right|=10 a b-10 a b=0
$$

- If we attempt to reduce this matrix to its echelon form, we will obtain a row of all 0 's, therefore the matrix is singular.
- So, the rank of this matrix is 1 , and the matrix is singular as discussed previously.

Value of the Determinant and Nonsingularity

- Therefore, given a linear equation system $A x=d$, where A is an $n \times n$ coefficient matrix, the following are equivalent:
- $|A| \neq 0$
- A has row independence, that is, there are n linearly independent rows (equivalently columns) in A.
- A is nonsingular.
- A^{-1} exists.
- The rank of A is n.
- A unique solution $x^{*}=A^{-1} d$ exists.

Finding the Inverse of a Matrix Method 1

- Let A and B be $m \times n$ and $m \times p$ matrices, respectively. Then the augmented matrix $(A \mid B)$ is the $m \times(n+p)$ matrix. That is, the matrix whose first n columns are the columns of A, and whose last p columns are the columns of B.
- If A is an invertible (nonsingular) $n \times n$ matrix, then it is possible to transform the matrix $\left(A \mid I_{n}\right)$ into the matrix $\left(I_{n} \mid A^{-1}\right)$ with elementary row operations.

Example of Finding the Inverse of a Matrix using

 Elementary Operations$$
\begin{gathered}
{\left[\begin{array}{ccc|ccc}
3 & 0 & 2 & 1 & 0 & 0 \\
2 & 0 & -2 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]} \\
\rightarrow\left[\left.\begin{array}{ccc}
5 & 0 & 0 \\
2 & 0 & -2 \\
0 & 1 & 1
\end{array} \right\rvert\, \begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \xrightarrow{2}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{5} & \frac{1}{5} & 0 \\
2 & 0 & -2 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Example of Finding the Inverse of a Matrix using

 Elementary Operations$$
\begin{aligned}
& \begin{array}{l}
3 \\
\rightarrow
\end{array}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{5} & \frac{1}{5} & 0 \\
0 & 0 & -2 & -\frac{2}{5} & \frac{3}{5} & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \stackrel{2}{\rightarrow}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{5} & \frac{1}{5} & 0 \\
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{10} & 0 \\
0 & 1 & 1 & 0 & 0 & 1
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lll|lll}
1 & 0 & 0 & \frac{1}{5} & \frac{1}{5} & 0 \\
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{10} & 0 \\
0 & 1 & 0 & -\frac{1}{5} & \frac{3}{10} & 1
\end{array}\right] \stackrel{1}{\rightarrow}\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{1}{5} & \frac{1}{5} & 0 \\
0 & 1 & 0 & -\frac{1}{5} & \frac{3}{10} & 1 \\
0 & 0 & 1 & \frac{1}{5} & -\frac{3}{10} & 0
\end{array}\right] \\
& \text { - So the inverse of this matrix is }\left[\begin{array}{ccc}
\frac{1}{5} & \frac{1}{5} & 0 \\
-\frac{1}{5} & \frac{3}{10} & 1 \\
\frac{1}{5} & -\frac{3}{10} & 0
\end{array}\right]
\end{aligned}
$$

Finding the Inverse of a Matrix Method 2

- In general, the formula to find the inverse of a matrix is

$$
A^{-1}=\frac{1}{|A|} A d j A
$$

- where Adj represents the adjugate or adjoint of a matrix. This is found by first finding the matrix of cofactors of a matrix and then swapping their positions over the main diagonal (also known as finding the transpose).

Example of Finding Inverse using Cofactors

- Let $A=\left[\begin{array}{ccc}3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1\end{array}\right]$.
- Step 1: Construct a matrix of minors.

$$
\left[\begin{array}{ccc}
0(1)+2(1) & 2(1)+2(0) & 2(1)-0(0) \\
0(1)-2(1) & 3(1)-2(0) & 3(1)-0(0) \\
0(-2)-0(2) & 3(-2)-2(2) & 3(0)-2(0)
\end{array}\right]=\left[\begin{array}{ccc}
2 & 2 & 2 \\
-2 & 3 & 3 \\
0 & -10 & 0
\end{array}\right]
$$

- Step 2: Construct a matrix of cofactors by simply applying the previously defined rule to the matrix of minors.

$$
\left[\begin{array}{ccc}
2 & -2 & 2 \\
2 & 3 & -3 \\
0 & 10 & 0
\end{array}\right]
$$

Example of Finding Inverse using Cofactors

- Step 3: Find the adjugate by taking the transpose of the cofactor matrix.

$$
\left[\begin{array}{ccc}
2 & 2 & 0 \\
-2 & 3 & 10 \\
2 & -3 & 0
\end{array}\right]
$$

- Step 4: Find the determinant of A. Since we already found the matrix of minors, all we have to do is multiply the top row of A by each element's corresponding minor.

$$
\left|\begin{array}{ccc}
3 & 0 & 2 \\
2 & 0 & -2 \\
0 & 1 & 1
\end{array}\right|=3(2)-0(2)+2(2)=10
$$

- Step 5: Apply the formula.

$$
A^{-1}=\frac{1}{10}\left[\begin{array}{ccc}
2 & 2 & 0 \\
-2 & 3 & 10 \\
2 & -3 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{5} & \frac{1}{5} & 0 \\
-\frac{1}{5} & \frac{3}{10} & 1 \\
\frac{1}{5} & -\frac{3}{10} & 0
\end{array}\right]
$$

Formula for the 2×2 case

- A well known and useful formula to find the inverse of a 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- Derivation using row echelon form:
$-\left[\begin{array}{ll|ll}a & b & 1 & 0 \\ c & d & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}a-\frac{c b}{d} & 0 & 1 & \frac{-b}{d} \\ c & d & 0 & 1\end{array}\right] \rightarrow$
$\left.\begin{array}{l}{\left[\begin{array}{cc|cc}\frac{a d-b c}{d} & 0 & 1 & \frac{-b}{d} \\ c & d & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}\frac{a d-b c}{d} & 0 & 1 & \frac{-b}{d} \\ 0 & d & \frac{-c d}{a d-b c} & \frac{a d}{a d-b c}\end{array}\right] \rightarrow} \\ {\left[\begin{array}{ll|l}1 & 0 & \frac{d}{a d-b c} \\ 0 & d & \frac{-c d}{a d-b c}\end{array} \frac{\frac{a d}{a d-b c}}{a d-b c}\right.}\end{array}\right] \rightarrow\left[\begin{array}{ll|ll}1 & 0 & \frac{d}{a d-b c} & -\frac{b}{a d-b c} \\ 0 & 1 & \frac{-c}{a d-b c} & \frac{a}{a d-b c}\end{array}\right]$.
- So the inverse of A is $\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$.

Cramer's Rule

- Another sometimes useful way of solving a system of equations is called Cramer's Rule.
- Suppose we have a system of equations $A x=d$, then Cramer's Rule says that

$$
x_{j}^{*}=\frac{\left|A_{j}\right|}{|A|}
$$

- where $\left|A_{j}\right|$ is the determinant of A with the j th column replaced by d.
- Clearly, it must be the case that $|A| \neq 0$, that is, A has an inverse, in order for Cramer's Rule to be applied.

Example of Cramer's Rule

- Suppose we have the system of equations

$$
\begin{gathered}
7 x_{1}-x_{2}-x_{3}=0 \\
10 x_{1}-2 x_{2}+x_{3}=8 \\
6 x_{1}+3 x_{2}-2 x_{3}=7
\end{gathered}
$$

Example of Cramer's Rule

Then, $A=\left[\begin{array}{ccc}7 & -1 & -1 \\ 10 & -2 & 1 \\ 6 & 3 & -2\end{array}\right], x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], d=\left[\begin{array}{l}0 \\ 8 \\ 7\end{array}\right]$

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc}
7 & -1 & -1 \\
10 & -2 & 1 \\
6 & 3 & -2
\end{array}\right|=7\left|\begin{array}{cc}
-2 & 1 \\
3 & -2
\end{array}\right|+\left|\begin{array}{cc}
10 & 1 \\
6 & -2
\end{array}\right|-\left|\begin{array}{cc}
10 & -2 \\
6 & 3
\end{array}\right|= \\
& 7(4)-7(3)+10(-2)-6-10(3)+6(-2)=28-21-20-6-30-12=-61
\end{aligned}
$$

Example of Cramer's Rule

$$
\begin{aligned}
& \left|A_{1}\right|=\left|\begin{array}{ccc}
0 & -1 & -1 \\
8 & -2 & 1 \\
7 & 3 & -2
\end{array}\right|=0\left|\begin{array}{cc}
-2 & 1 \\
3 & -2
\end{array}\right|+\left|\begin{array}{cc}
8 & 1 \\
7 & -2
\end{array}\right|-\left|\begin{array}{cc}
8 & -2 \\
7 & 3
\end{array}\right|= \\
& -16-7-24-14=-61 \\
& \left|A_{2}\right|=\left|\begin{array}{ccc}
7 & 0 & -1 \\
10 & 8 & 1 \\
6 & 7 & -2
\end{array}\right|=7\left|\begin{array}{cc}
8 & 1 \\
7 & -2
\end{array}\right|+0\left|\begin{array}{cc}
10 & 1 \\
6 & -2
\end{array}\right|-\left|\begin{array}{cc}
10 & 8 \\
6 & 7
\end{array}\right|= \\
& -16(7)-7(7)-70+8(6)=-183 \\
& \left|A_{3}\right|=\left|\begin{array}{ccc}
7 & -1 & 0 \\
10 & -2 & 8 \\
6 & 3 & 7
\end{array}\right|=7\left|\begin{array}{cc}
-2 & 8 \\
3 & 7
\end{array}\right|+\left|\begin{array}{cc}
10 & 8 \\
6 & 7
\end{array}\right|-0\left|\begin{array}{cc}
10 & -2 \\
6 & 3
\end{array}\right|= \\
& -14(7)-24(7)+70-8(6)=-244 \\
& x_{1}^{*}=\frac{\left|A_{1}\right|}{|A|}=\frac{-61}{-61}=1, x_{2}^{*}=\frac{\left|A_{2}\right|}{|A|}=\frac{-183}{-61}=3, x_{3}^{*}=\frac{\left|A_{3}\right|}{|A|}=\frac{-244}{-61}=4
\end{aligned}
$$

