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Matrix Algebra
Two matrices are equal if and only if they have the same dimension
and identical elements in corresponding locations.

Example:
[
1 2
3 4

]
=

[
1 2
3 4

]
6=
[
4 2
3 1

]
Two matrices can be added or subtracted if and only if they have the
same dimension. Then addition or subtraction is performed by adding
or subtracting each corresponding element.
Examples: a11 a12

a21 a22
a31 a32

+
 b11 b12

b21 b22
b31 b32

=

 a11 +b11 a12 +b12
a21 +b21 a22 +b22
a31 +b31 a32 +b32


[
4 6
8 10

]
−
[
4 7
7 4

]
=

[
0 −1
1 6

]
[
1 2
3 4

]
and

[
2 1

]
cannot be added.
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Matrix Algebra

Scalar multiplication is to multiply each element of the matrix by a
scalar.
Example 1:

b
[

a11 a12
a21 a22

]
=

[
ba11 ba12
ba21 ba22

]
Example 2:

7
[
3 −1
0 5

]
=

[
21 −7
0 35

]
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Matrix Algebra

Suppose we want to multiply two matrices, A and B to form product
AB. They are conformable for multiplication (we are able to multiply
them) if and only if the column dimension of A (the lead matrix) is
equal to the row dimension of B (the lag matrix).

Example: Let A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12 b13
b21 b22 b23

]
I The product AB is defined since A has dimension 2×2 and thus has 2

columns and B has dimension 2×3 and thus has 2 rows.
I The product BA is however not defined since B has 3 columns while A

has only 2 rows.

A product will have the same number of rows as the lead matrix and
columns as the lag matrix.

I Let A have dimension m×n and B have dimension n×q then AB
would have dimension m×q.

I In the above example, AB would have dimension 2×3.
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Matrix Algebra
Each element in a product is defined as a sum of a products, in which
the elements across the rows of A are multiplied with the elements
down the column of B.

Example 1: Again, let A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12 b13
b21 b22 b23

]
.

AB =

[
a11b11 +a12b21 a11b12 +a12b22 a11b13 +a12b23
a21b11 +a22b21 a21b12 +a22b22 a21b13 +a22b23

]

Example 2: Let A =

[
4 7
−1 2

]
and B =

[
1 3 −3
2 6 −2

]

AB =

[
4(1)+7(2) 4(3)+7(6) 4(−3)+7(−2)

(−1)(1)+2(2) (−1)(3)+2(6) (−1)(−3)+2(−2)

]
=

=

[
18 54 −26
3 9 −1

]
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Matrix Algebra

Example 3: Let A =

 7 10 −1
2 1 3
4 −3 5

 and B =

[
0 1 2
−1 −2 0

]
Find product BA. Is it conformable for multiplication?

I Yes, it is conformable for multiplication since the lead matrix B has 3
columns and the lag matrix A has 3 rows. The product BA will have
dimension 2×3.

I BA =[
0∗7+1∗2+2∗4 0∗10+1∗1+2∗−3 0∗−1+1∗3+2∗5
−1∗7+−2∗2+0∗4 −1∗10+−2∗1+0∗−3 −1∗−1+−2∗3+0∗5

]

=

[
10 −5 13
−11 −12 −5

]
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Matrix Algebra

Recall our previous example where

A =

 6 3 1
1 4 −2
4 −1 5

 x =

 x1
x2
x3

 d =

 22
12
10


Now that we understand matrix multiplication, we can see why we
can write the original system of equations as Ax = d .

Ax =

 6 3 1
1 4 −2
4 −1 5

 x1
x2
x3

=

 6x1 +3x2 + x3
x1 +4x2−2x3
4x1−x2 +5x3

= d =

 22
12
10
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A few notes about vectors and division
Vectors are simply special cases of matrices, and thus are multiplied
with the same rules.

Example: Let u =
[
3 6 9

]
and u′ =

 3
6
9

. Note that u has

dimension 1×3 while u′ has dimension 3×1. They are conformable
since 3= 3 and the dimension of uu′ will be 1×1, that is, a scalar.
Find uu′.

uu′ =
[
3 6 9

] 3
6
9

= 3(3)+6(6)+9(9) = 126

Matrices cannot be divided because A/B would actually represent
both AB−1 or B−1A, where B−1 is the inverse of B (which we will
discuss later). While one of these could be defined for the given
matrices, the other may not be, so the division of matrices is not
defined.
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Linear Dependence

A set of vectors v1, ...,vn is linearly dependent if and only if any one
of them can be expressed as a linear combination of the remaining
vectors. Otherwise they are linearly independent.
Example 1: Let v1 =

[
5 12

]
and v2 =

[
10 24

]
.

2v1 = 2
[
5 12

]
=
[
10 24

]
= v2
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Linear Dependence

Example 2: Let v1 =

[
2
7

]
and v2 =

[
1
8

]
and v3 =

[
4
5

]
. We may

write:
3v1−2v2 =

[
6
21

]
−
[

2
16

]
=

[
4
5

]
= v3

Thus, v3 is a linear combination of v1 and v2, so these vectors are
linearly dependent.
Application: Perfect multicollinearity in econometrics. If we think of
each column of data in a dataset as a column vector, then if two
variables are so similar that they are simply linear combinations of
each other, then they are perfectly multicollinear and we cannot
proceed with our regression.
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Commutative, Associative, and Distributive Laws

Matrix addition is commutative. A+B = B +A.

I Example: Let A =

[
3 1
0 2

]
and B =

[
6 2
3 4

]
. Then

A+B =

[
9 3
3 6

]
= B +A.

Matrix addition is associative. (A+B)+C = A+(B +C)

I Example: Let v1 =

[
3
4

]
, v2 =

[
9
1

]
, v3 =

[
2
5

]
.

(v1+v2)−v3 =

[
12
5

]
−
[

2
5

]
=

[
10
0

]
= v1+(v2−v3)=

[
3
4

]
+

[
7
4

]
=

[
10
0

]
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Commutative, Associative, and Distributive Laws

Matrix multiplication is not commutative. AB 6= BA.

Example: Let A =

[
1 2
3 4

]
, B =

[
0 −1
6 7

]
.

AB =

[
1(0)+2(6) 1(−1)+(2)(7)
3(0)+4(6) 3(−1)+4(7)

]
=

[
12 13
24 25

]

BA =

[
0(1)+(−1)(3) 0(2)+(−1)(4)
6(1)+7(3) 6(2)+7(4)

]
=

[
−3 −4
27 40

]
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Commutative, Associative, and Distributive Laws

Matrix multiplication is associative. (AB)C = A(BC) = ABC . In
order to multiply three or more matrices, each adjacent pair of
matrices must be conformable.
If the conformability condition is met, adjacent pair of matrices may
be multiplied in any order.

Example: Let A =

[
1
2

]
and C =

 0 −1
5 2
7 1

 and suppose we want

to form ABC . Since A has dimension 2×1 and C has dimension
3×2, B must have dimension 1×3. Then, let B =

[
3 2 −2

]
.
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Commutative, Associative, and Distributive Laws

(AB)C =

[
1(3) 1(2) 1(−2)
2(3) 2(2) 2(−2)

] 0 −1
5 2
7 1

=

[
3 2 −2
6 4 −4

] 0 −1
5 2
7 1

=[
3(0)+2(5)+(−2)(7) 3(−1)+2(2)+(−2)(1)
6(0)+4(5)+(−4)(7) 6(−1)+4(2)+(−4)(1)

]
=

[
−4 −1
−8 −2

]
A(BC) =

[
1
2

][
3(0)+2(5)+(−2)(7) 3(−1)+2(2)+(−2)(1)

]
=[

1
2

][
−4 −1

]
=

[
1(−4) 1(−1)
2(−4) 2(−1)

]
=

[
−4 −1
−8 −2

]
Matrix multiplication is distributive. A(B +C) = AB +AC and
(B +C)A = BA+CA. The conformability conditions for addition and
multiplication must be met in each step.
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Special Types of Matrices

A square matrix is a matrix which has the same number of rows and
columns. That is, a matrix of dimension n×n.
The identity matrix is a square matrix with 1’s in its principal
diagonal (the diagonal running from the top left to the bottom right
of the matrix) and 0s everywhere else. This matrix is denoted I.

I Example: I =
[

1 0
0 1

]
.

I The identity matrix plays a very similar role to the number 1 in scalar
algebra. That is, for any matrix A, IA = AI = A. Alternatively, using
the associative law, AIB = (AI)B = AB.
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Special Types of Matrices

Example: Consider the matrix A =

[
1 2
3 4

]
.

AI =
[
1 2
3 4

][
1 0
0 1

]
=

[
1(1)+2(0) 1(0)+2(1)
3(1)+4(0) 3(0)+4(1)

]
=

[
1 2
3 4

]

IA =

[
1 0
0 1

][
1 2
3 4

]
=

[
1(1)+0(3) 1(2)+0(4)
0(1)+1(3) 0(2)+1(4)

]
=

[
1 2
3 4

]
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Special Types of Matrices

The null matrix is any matrix with 0 as every element. It plays the
role of the number 0 in scalar algebra.

I
0

(2x2) =

[
0 0
0 0

]
and 0

(3x2) =

 0 0
0 0
0 0


Example 1: A+0=

[
a11 a12
a21 a22

]
+

[
0 0
0 0

]
=

[
a11 a12
a21 a22

]
= A

Example 2:

A
(2x3)

0
(3x1) =

[
a11 a12 a13
a21 a22 a23

] 0
0
0

=

[
0
0

]
=

0
(2x1)
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Special Types of Matrices
An upper triangular matrix is a square matrix where all the entries
below the principal diagonal are 0.

I Example:

 1 2 3
0 4 5
0 0 6


A lower triangular matrix is a square matrix where all the entries
above the principal diagonal are 0.

I Example:

 1 0 0
2 3 0
4 5 6


A triangular matrix is a matrix that is either upper or lower triangular.
A matrix can be upper and lower triangular only if the only non-zero
elements are on the principal diagonal. The identity matrix is an
important example.
Application: Triangular matrices are much easier to solve numerically
using a process called forward and back substitution, and does not
require inversion as for non-triangular matrices.
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Tranposes of Matrices

The transpose of a matrix A of dimension m×n is a matrix A′ of
dimension n×m obtained from A by interchanging the rows with the
columns.

I Example: Let A =

[
3 8 −9
1 0 4

]
and B =

[
3 4
1 7

]
.

I A′ =

 3 1
8 0
−9 4

 and B′ =
[

3 1
4 7

]
Properties of Transposes

(A′)′ = A

(A+B)′ = A′+B′

(AB)′ = B′A′
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Example of Properties of Transposes

Let A =

[
4 1
9 0

]
and B =

[
2 0
7 1

]

A′ =
[
4 9
1 0

]
→ (A′)′ =

[
4 1
9 0

]

(A+B)′ =

[
6 1
16 1

]′
=

[
6 16
1 1

]
= A′+B′ =

[
4 9
1 0

]
+

[
2 7
0 1

]

(AB)′ =

([
4 1
9 0

][
2 0
7 1

])′
=

[
4(2)+1(7) 4(0)+1(1)
9(2)+0(7) 9(0)+0(1)

]′
=[

15 1
18 0

]′
=

[
15 18
1 0

]

B′A′=
[
2 7
0 1

][
4 9
1 0

]
=

[
2(4)+7(1) 2(9)+7(0)
0(4)+1(1) 0(9)+1(0)

]
=

[
15 18
1 0

]
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Matrix Inverses

A square matrix A has an inverse A−1 if the following condition is
met: AA−1 = A−1A = I.
Properties of inverses:

I Squareness is a necessary but not sufficient condition for the existence
of an inverse. If a square matrix A has an inverse, A is nonsingular. If
A does not have an inverse, it is singular.

I If A−1 does exist, then A and A−1 are inverses of each other.
I A and A−1 will always have the same dimension.
I If an inverse exists, then it is unique.
I (A−1)−1 = A
I (AB)−1 = B−1A−1

I (A′)−1 = (A−1)′

Proofs are on pages 75-77.
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Matrix Inverses

Let A =

[
3 1
0 2

]
and A−1 = 1

6

[
2 −1
0 3

]
AA−1 =

[
3 1
0 2

][
2 −1
0 3

]
1
6 =

[
3(2)+1(0) 3(−1)+1(3)
0(2)+2(0) 0(−1)+2(3)

]
1
6 =[

6 0
0 6

]
1
6 =

[
1 0
0 1

]
A−1A = 1

6

[
2 −1
0 3

][
3 1
0 2

]
= 1

6

[
2(3)+(−1)(0) 2(1)+(−1)(2)
0(3)+3(0) 0(1)+3(2)

]
=

1
6

[
6 0
0 6

]
=

[
1 0
0 1

]
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Matrix Inverses

As we discussed previously, we are able to write systems of equations
as Ax = d as long as the system meets the proper conditions.
Then, if A−1 exists, we can premultiply both sides by A−1 to get

I A−1Ax = A−1d → x = A−1d
I The left hand side is now a column vector of variables and the right

hand side is a matrix of solution values for the system of equations.
I We now see that if we are able to find the inverse of the coefficient

matrix for a system of equations, we are able to determine the
solutions for that system.

We will return shortly to how to determine the existence of inverses
and calculate them.
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