Homework Day 9 - ECON 186

Problem 1. Chiang and Wainwright 12.3 \#1(d)

\#1
Use the bordered Hessian to determine whether the stationary value of z obtained in each part of Exercise 12.2-1 is a maximum or a minimum.(See 12.2-1 below)
Use the Lagrange-multiplier method to find the stationary values of z :
(d) $z=7-y+x^{2}$, subject to $x+y=0$

Problem 2. Chiang and Wainwright 12.5 \#1(c)

\#1
Given $U=(x+2)(y+1)$ and $P_{x}=4, P_{y}=6$, and $B=130$:
(c)Is the second-order sufficient condition for maximum satisfied?

Problem 3.

Do the optimum levels of x and y in Homework 8 problem 4 maximize the function $f(x, y)$? Show and explain why or why not.

Problem 4.

Suppose that you are trying to find the optimum values of $f(x, y, z)=4 y-2 z$ subject to $2 x$ $-y-z=2$ and $x^{2}+y^{2}=1$. Find the bordered hessian of this optimization problem.

Problem 5. Chiang and Wainwright 12.6 \#1(a, c, f), 6

\#1
Determine whether the following functions are homogeneous. If so, of what degree?
(a) $f(x, y)=\sqrt{x y}$
(c) $f(x, y)=x^{3}-x y+y^{3}$
(f) $f(x, y, w)=x^{4}-5 y w^{3}$

Problem 6.

Maximize $C=-\left(x_{1}-4\right)^{2}-\left(x_{2}-4\right)^{2}$ subject to $x_{1}+x_{2} \leq 4$ and $x_{1}+3 x_{2} \leq 9$ and x_{1}, x_{2} ≥ 0. (That is, find the values of x_{1} and x_{2} that maximize C)

