Homework Day 7 - ECON 186

Problem 1. Chiang and Wainwright 9.2 \#1

\#1
Find the stationary values of the following (check whether they are relative maxima or minima or inflection points), assuming the domain to be the set of all real numbers:
(a) $y=-2 x^{2}+8 x+7$
(b) $y=5 x^{2}+x$
(c) $y=3 x^{2}+3$
(d) $y=3 x^{2}-6 x+2$

Problem 2. For problem 1, parts (a) and (b), determine whether each function is concave or convex (strictly?)

Problem 3. Chiang and Wainwright $9.3 \# 1,6$

\#1
Find the second and third derivatives of the following functions:
(a) $a x^{2}+b x+c$
(c) $\frac{3 x}{1-x}(x \neq 1)$
(b) $7 x^{4}-3 x-4$
(d) $\frac{1+x}{1-x}$
\#6
A person who is neither risk-averse nor risk-loving (indifferent toward a fiar game) is said to be "risk-neutral".
(a)What kind of utility function would you use to characterize such a person?
(b)Using the die-throwing game detailed in the text, describe the relationship between $U(\$ 15)$ and $E U$ for the risk-neutral person.

Problem 4. Chiang and Wainwright $9.4 \# 1,3(b, c, d, e), 6$

\#1
Find the relative maxima and minima of y by the second-derivative test:
(a) $y=-2 x^{2}+8 x+25$
(c) $y=\frac{1}{3} x^{3}-3 x^{2}+5 x+3$
(b) $y=x^{3}+6 x^{2}+9$
(d) $y=\frac{2 x}{1-2 x}\left(x \neq \frac{1}{2}\right)$
\#3
A firm has the following total-cost and demand functions:
$C=\frac{1}{3} Q^{3}-7 Q^{2}+111 Q+50$
$Q=100-P$
(b) Write out the total-revenue function R in terms of Q.
(c)Formulate the total-profit function π in terms of Q.
(d)Find the profit-maximizing level of output Q^{*}.
(e)What is the maximum profit?

\#6

A purely competitive firm has a single variable input L (labor), with the wage rate W_{0} per period. Its fixed inputs cost the firm a total of F dollars per period. The price of the product is P_{0}.
(a)Write the production function, revenue function, cost function, and profit function of the firm.
(b)What is the first-order condition for profit maximization? Give this condition an economic interpretation.
(c) What economic circumstances would ensure that profit is maximized rather than minimized?

Problem 5. Chiang and Wainwright $11.2 \# 1,4,5$
\#1
Table 11.1

Condition	Maximum	Minimum
First-order necessary condition	$f_{x}=f_{y}=0$	$f_{x}=f_{y}=0$
Second-order sufficient condition	$f_{x x}, f_{y y}<0$ and $f_{x x} f_{y y}>f_{x y}^{2}$	$f_{x x}, f_{y y}>0$ and $f_{x x} f_{y y}>f_{x y}^{2}$

Use Table 11.1 to find the extreme value(s) of each of the following four functions, and determine whether they are maxima or minima:

1. $z=x^{2}+x y+2 y^{2}+3$
2. $z=e^{2 x}-2 x+2 y^{2}+3$
3. Consider the function $z=(x-2)^{4}+(y-3)^{4}$
(a)Establish by intuitive reasoning that z attains a minimum $\left(z^{*}=0\right)$ at $x^{*}=2$ and $y^{*}=3$.
(b)Is the first-order necessary condition in Table 11.1 satisfied?
(c)Is the second-order sufficient condition in Table 11.1 satisfied?
(d)Find the value of $d^{2} z$. Does it satisfy the second-order necessary condition for a minimum in (11.9)?

Problem 6. Chiang and Wainwright 11.3 \#4(a, d), 5(a, d)

Express each of the following quadratic forms as a matrix product involving a symmetric coefficient matrix:
(a) $q=3 u^{2}-4 u v+7 v^{2}$
(d) $q=6 x y-5 y^{2}-2 x^{2}$
\#5
From the discriminants obtained from the symmetric coefficient matrices of Prob.4, ascertain by the determinantal test which of the quadratic forms are positive definite and which are negative definite.

