Homework Day 5-ECON 186

Problem 1. Chiang and Wainwright 7.4 \#2(a, c), 7
\#2 Find f_{x} and f_{y} from the following:
(a) $f(x, y)=x^{2}+5 x y-y^{3}$
(c) $f(x, y)=\frac{2 x-3 y}{x+y}$
\#7 Write the gradients of the following functions:
(a) $f(x, y, z)=x^{2}+y^{3}+z^{4}$
(b) $f(x, y, z)=x y z$

Problem 2. Chiang and Wainwright 7.6 \#1

\#1 Use Jacobian determinants to test the existence of functional dependence between:
(a)

$$
\begin{aligned}
& y_{1}=3 x_{1}^{2}+x_{2} \\
& y_{2}=9 x_{1}^{4}+6 x_{1}^{2}\left(x_{2}+4\right)+x_{2}\left(x_{2}+8\right)+12
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y_{1}=3 x_{1}^{2}+2 x_{2}^{2} \\
& y_{2}=5 x_{1}+1
\end{aligned}
$$

Problem 3. Chiang and Wainwright 8.1 \#6

\#6 Given $Q=100-2 P+0.02 Y$, where Q is quantity demanded, P is price,and Y is income, and given $P=20$ and $Y=5000$, find the
(a)Price elasticity of demand.
(b)Income elasticity ofdemand.

Problem 4. Chiang and Wainwright 8.2 \#7(a)

\#7 Find the total differential for each of the following functions:
(a) $U=-5 x^{3}-12 x y-6 y^{5}$

Problem 5. Chiang and Wainwright 8.3 \#2

\#2
Use the rules of differentials to find $d y$ from the following functions:
(a) $y=\frac{x_{1}}{x_{1}+x_{2}}$
(b) $y=\frac{2 x_{1} x_{2}}{x_{1}+x_{2}}$

Check your answers against those obtained for Exercise 8.2-3(see below).
Exercise 8.2, \#3
Find the total differentia, given
(a) $y=\frac{x_{1}}{x_{1}+x_{2}}$
(b) $y=\frac{2 x_{1} x_{2}}{x_{1}+x_{2}}$

Problem 6. Chiang and Wainwright 8.4 \#1

\#1 Find the total derivative $d z / d y$, given
(a) $z=f(x, y)=5 x+x y-y^{2}$, where $x=g(y)=3 y^{2}$
(b) $z=4 x^{2}-3 x y+2 y^{2}$, where $x=1 / y$
(c) $z=(x+y)(x-2 y)$, where $x=2-7 y$

Problem 7. Chiang and Wainwright 8.5 \#2(a, c), 6
\#2 For each $F(x, y)=0$ use the implicit-function rule to find $d y / d x$:
(a) $F(x, y)=3 x^{2}+2 x y+4 y^{3}=0$
(c) $F(x, y)=7 x^{2}+2 x y^{2}+9 y^{4}=0$
\#6 Given $x^{2}+3 x y+2 y z+y^{2}+z^{2}-11=0$, is an implicit function $z=f(x, y)$ defined around the point $(x=1, y=2, z=0)$? If so, find $\partial z / \partial x$ and $\partial z / \partial y$ by the implicit function rule, and evaluate them at that point.

