Homework Day 4 - ECON 186

Problem 1. Chiang and Wainwright 6.2 #1

#1 Given the function $y = 4x^2 + 9$: (a)Find the difference quotient as a function of x and Δx . (Use x in lieu of x_0) (b)Find the derivative $\frac{dy}{dx}$ (c)Find f'(3) and f'(4)

Problem 2. Chiang and Wainwright 6.4 #1, 2, 3

#1 Given the function $q = (v^2 + v - 56)/(v - 7), (v \neq 7)$, find the left-side limit and the right-side limit of q as v approaches 7. Can we conclude from these answers that q has a limit as v approaches 7? #2 Given $q = [(v + 2)^3 - 8]/v, (v \neq 0)$, find: (a) $\lim_{v \to 0} q$ (b) $\lim_{v \to 2} q$ (c) $\lim_{v \to a} q$ #3 Given $q = 5 - 1/v, (v \neq 0)$, find: (a) $\lim_{v \to +\infty} q$ (b) $\lim_{v \to -\infty} q$

Problem 3. Chiang and Wainwright 6.6 #3(a)

#3 Find the limits of q = (3v+5)/(v+2), as $v \to 0$

Problem 4. Chiang and Wainwright 6.7 #2(a), 3(a)

#2 Taking the set of all finite real numbers as the domain of the function $q = g(v) = v^2 - 5v - 2$, Find the limit of q as v tend to N (a finite real number) **#3** Given the function $q = g(v) = \frac{v+2}{v^2+2}$: (a)Use the limit theorems to find $\lim_{v \to N} q$, N being a finite real number.

Problem 5. Chiang and Wainwright 7.2 #3(a, b, d, f), 7(a)

#3 Differentiate the following by using the product rule: (a) $(9x^2-2)(3x+1)$ (b) $(3x+10)(6x^2-7x)$ (d) $(ax-b)(cx^2)$ (f) $(x^2+3)x^{-1}$ **#7** Find the derivatives of: $(x^2+3)/x$

Problem 6. Chiang and Wainwright 7.3 #1, 3(a)

#1 Given $y = u^3 + 2u$, where $u = 5 - x^2$, find dy/dx by the chain rule. #3 Use the chain rule to find dy/dx for the following: (a) $y = (3x^2 - 13)^3$

Problem 7. Chiang and Wainwright 10.3 #3(c,d,e)

#3 Evaluate the following by application of the rules of logarithms: (c) $\ln(3/B)$ (d) $\ln Ae^2$ (e) $\ln ABe^{-4}$

Problem 8. Chiang and Wainwright 10.5 #1(e, f), 3(d, f), 4(c)

#1 Find the derivatives of: (e) $y = e^{ax^2+bx+c}$ (f) $y = xe^x$ #3 Find the derivatives of: (d) $y = 5ln(t+1)^2$ (f) $y = ln[x(1-x)^8]$ #4 Find the derivatives of: (c) $y = 13^{2t+3}$