Homework Day 4 - ECON 186

Problem 1. Chiang and Wainwright 6.2 \#1

\#1 Given the function $y=4 x^{2}+9$:
(a)Find the difference quotient as a function of x and Δx. (Use x in lieu of x_{0})
(b)Find the derivative $\frac{d y}{d x}$
(c)Find $f^{\prime}(3)$ and $f^{\prime}(4)$

Problem 2. Chiang and Wainwright 6.4 \#1, 2, 3

\#1 Given the function $q=\left(v^{2}+v-56\right) /(v-7),(v \neq 7)$, find the left-side limit and the right-side limit of q as v approaches 7 . Can we conclude from these answers that q has a limit as v approaches 7 ?
\#2 Given $q=\left[(v+2)^{3}-8\right] / v,(v \neq 0)$, find:
(a) $\lim _{v \rightarrow 0} q$
(b) $\lim _{v \rightarrow 2} q$
(c) $\lim _{v \rightarrow a} q$
\#3 Given $q=5-1 / v,(v \neq 0)$, find:
(a) $\lim _{v \rightarrow+\infty} q$
(b) $\lim _{v \rightarrow-\infty} q$

Problem 3. Chiang and Wainwright 6.6 \#3(a)
\#3 Find the limits of $q=(3 v+5) /(v+2)$, as $v \rightarrow 0$
Problem 4. Chiang and Wainwright 6.7 \#2(a), 3(a)
\#2 Taking the set of all finite real numbers as the domain of the function
$q=g(v)=v^{2}-5 v-2$, Find the limit of q as v tend to N (a finite real number)
\#3 Given the function $q=g(v)=\frac{v+2}{v^{2}+2}$:
(a)Use the limit theorems to find $\lim _{v \rightarrow N} q, N$ being a finite real number.

Problem 5. Chiang and Wainwright $7.2 \# 3(a, b, d, f), 7(a)$
\#3 Differentiate the following by using the product rule:
(a) $\left(9 x^{2}-2\right)(3 x+1)$
(b) $(3 x+10)\left(6 x^{2}-7 x\right)$
(d) $(a x-b)\left(c x^{2}\right)$
(f) $\left(x^{2}+3\right) x^{-1}$
\#7 Find the derivatives of: $\left(x^{2}+3\right) / x$

Problem 6. Chiang and Wainwright 7.3 \#1, 3(a)

\#1
Given $y=u^{3}+2 u$, where $u=5-x^{2}$, find $d y / d x$ by the chain rule.
\#3
Use the chain rule to find $d y / d x$ for the following:
(a) $y=\left(3 x^{2}-13\right)^{3}$

Problem 7. Chiang and Wainwright 10.3 \#3(c,d,e)
\#3
Evaluate the following by application of the rules of logarithms:
(c) $\ln (3 / B)$
(d) $\ln A e^{2}$
(e) $\ln A B e^{-4}$

Problem 8. Chiang and Wainwright 10.5 \#1(e, f), 3(d, f), 4(c) \#1
Find the derivatives of:
(e) $y=e^{a x^{2}+b x+c}$
(f) $y=x e^{x}$
\#3
Find the derivatives of:
(d) $y=5 \ln (t+1)^{2}$
(f) $y=\ln \left[x(1-x)^{8}\right]$
\#4

Find the derivatives of:
(c) $y=13^{2 t+3}$

