Homework Day 2 - ECON 186

Problem 1. Chiang and Wainwright 4.2 \#1,2, 4, 6
\#1 Given
$A=\left[\begin{array}{cc}7 & -1 \\ 6 & 9\end{array}\right], B=\left[\begin{array}{cc}0 & 4 \\ 3 & -2\end{array}\right], C=\left[\begin{array}{ll}8 & 3 \\ 6 & 1\end{array}\right]$,
find: (a) $A+B \quad$ (b) $C-A \quad$ (c) $3 A \quad$ (d) $4 B+2 C$
\#2 Given
$A=\left[\begin{array}{ll}2 & 8 \\ 3 & 0 \\ 5 & 1\end{array}\right], B=\left[\begin{array}{ll}2 & 0 \\ 3 & 8\end{array}\right], C=\left[\begin{array}{ll}7 & 2 \\ 6 & 3\end{array}\right]:$
(a)Is $A B$ defined? Calculate $A B$. Can you calculate $B A$? Why?
(b)Is $B C$ defined? Calculate $B C$. Is $C B$ defined? If so, calculate $C B$. Is $B C=C B$ true?
\#4 Find the product matrices in the following (in each case, append beneath every matrix a dimension indicator):
(a) $\left[\begin{array}{lll}0 & 2 & 0 \\ 3 & 0 & 4 \\ 2 & 3 & 0\end{array}\right]\left[\begin{array}{ll}8 & 0 \\ 0 & 1 \\ 3 & 5\end{array}\right]$, (c) $\left[\begin{array}{ccc}3 & 5 & 0 \\ 4 & 2 & -7\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y} \\ \mathrm{z}\end{array}\right]$
(b) $\left[\begin{array}{ccc}6 & 5 & -1 \\ 1 & 0 & 4\end{array}\right]\left[\begin{array}{cc}4 & -1 \\ 5 & 2 \\ 0 & 1\end{array}\right]$, (d) $\left[\begin{array}{lll}\mathrm{a} & \mathrm{b} & \mathrm{c}\end{array}\right]\left[\begin{array}{ll}7 & 0 \\ 0 & 2 \\ 1 & 4\end{array}\right]$
\#6 Expand the following summation expressions:
(a) $\sum_{i=2}^{5} x_{i}$
(b) $\sum_{i=5}^{8} a_{i} x_{i}$
(c) $\sum_{i=1}^{4} b x_{i}$
(d) $\sum_{i=1}^{n} a_{i} x^{i-1}$
(e) $\sum_{i=0}^{3}(x+i)^{2}$

Problem 2. Chiang and Wainwright 4.3 \#1(a, b, d), 2
\#1 Given $u^{\prime}=\left[\begin{array}{lll}5 & 1 & 3\end{array}\right], v^{\prime}=\left[\begin{array}{lll}3 & 1 & -1\end{array}\right], w^{\prime}=\left[\begin{array}{lll}7 & 5 & 8\end{array}\right]$, and $x^{\prime}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$, write out the column vectors, u, v, w and x, and find
(a) $u v^{\prime}$
(b) $u w^{\prime}$
(d) $v^{\prime} u$
\#2 Given
$w=\left[\begin{array}{c}3 \\ 2 \\ 16\end{array}\right], x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right], y=\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]$, and $z=\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]$:
(a)Which of the following are defined: $w^{\prime} x, x^{\prime} y^{\prime}, x y^{\prime}, y^{\prime} y, z z^{\prime}, y w^{\prime}, x y$?
(b)Find all the products that are defined.

Problem 3. Chiang and Wainwright 4.4 \#1

\#1 Given $A=\left[\begin{array}{ll}3 & 6 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{cc}-1 & 7 \\ 8 & 4\end{array}\right]$, and $C=\left[\begin{array}{ll}3 & 4 \\ 1 & 9\end{array}\right]$, verify that
(a) $(A+B)+C=A+(B+C)$
(b) $(A+B)-C=A+(B-C)$

Problem 4. Chiang and Wainwright 4.5 \#1

\#1 Given $A=\left[\begin{array}{ccc}-1 & 5 & 7 \\ 0 & -2 & 4\end{array}\right], b=\left[\begin{array}{l}9 \\ 6 \\ 0\end{array}\right]$, and $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$:
Calculate: (a) AI
(b)IA
(c) Ix
(d) $x^{\prime} I$

Indicate the dimension of the identity matrix used in each case.
Problem 5. Chiang and Wainwright 4.6 \#1, 2
\#1
Given $A=\left[\begin{array}{cc}0 & 4 \\ -1 & 3\end{array}\right], B=\left[\begin{array}{cc}3 & -8 \\ 0 & 1\end{array}\right], C=\left[\begin{array}{lll}1 & 0 & 9 \\ 6 & 1 & 1\end{array}\right]$, find A^{\prime}, B^{\prime}, and C^{\prime}.
\#2 Use the matrices given in Prob. 1 to verify that
(a) $(A+B)^{\prime}=A^{\prime}+B^{\prime}$
(b) $(A C)^{\prime}=C^{\prime} A^{\prime}$

