Homework Day 1 - ECON 186

Problem 1. Chiang and Wainwright $2.3 \# 3,5$

$\# 3$ Let $\left.S_{1}=\{2,4,6\}, S_{2}=\{7,2,6\}, S_{3}=\{4,2,6\}, S_{4}=\{2,4\}\right)$, find:
(a) $S_{1} \cup S_{2}$
(c) $S_{2} \cap S_{3}$
(e) $S_{4} \cap S_{2} \cap S_{1}$
(b) $S_{1} \cup S_{3}$
(d) $S_{2} \cap S_{4}$
(f) $S_{3} \cup S_{1} \cup S_{4}$
\#5 Given $A=\{4,5,6\}, B=\{3,4,6,7\}$, and $C=\{2,3,6\}$, verify the distributive law.

Problem 2. Chiang and Wainwright 2.4 \#1, 6, 7

\#1 Given $S_{1}=\{3,6,9\}, S_{2}=\{a, b\}$, and $S_{3}=\{m, n\}$, find the Cartesian products:
(a) $S_{1} \times S_{2}$
(b) $S_{2} \times S_{3}$
(c) $S_{3} \times S_{1}$
\#6 For the function $y=-x^{2}$, if the domain is the set of all nonnegative real numbers, what will its range be?
\#7 In the theory of the firm, economists consider the total cost C to be a function of the output level $\mathrm{Q}: \mathrm{C}=\mathrm{f}(\mathrm{Q})$.
(a) According to the definition of a function, should each cost figure be associated with a unique level of output?
(b) Should each level of output determine a unique cost figure?

Problem 3. Chiang and Wainwright 3.2 \#2

\#2 Let the demand and supply functions be as follows:
(a) $\begin{cases}Q_{d} & =51-3 P \\ Q_{s} & =6 P-10\end{cases}$
(b) $\left\{\begin{array}{l}Q_{d}=30-2 P \\ Q_{s}=-6+5 P\end{array}\right.$
find P^{*} and Q^{*} by elimination of variables. (Use fractions rather than decimals.)

Problem 4. Chiang and Wainwright 3.3 \#6

\#6 Find the equilibrium solution for each of the following models:
(a) $\left\{\begin{array}{l}Q_{d}=Q_{s} \\ Q_{d}=3-P^{2} \\ Q_{s}=6 P-4\end{array}\right.$
(b) $\left\{\begin{array}{l}Q_{d}=Q_{s} \\ Q_{d}=8-P^{2} \\ Q_{s}=P^{2}-2\end{array}\right.$

Problem 5. Chiang and Wainwright 4.1 \#1, 2

(Model 3.1)
$Q_{d}=Q_{s} \quad Q_{d}=a-b P \quad Q_{s}=-c+d P \quad(a, b, c, d>0)$
(Model 3.12)
$Q_{d 1}-Q_{s 1}=0$
$Q_{d 1}=a_{0}+a_{1} P_{1}+a_{2} P_{2}$
$Q_{s 1}=b_{0}+b_{1} P_{1}+b_{2} P_{2}$
$Q_{d 2}-Q_{s 2}=0$
$Q_{d 2}=\alpha_{0}+\alpha_{1} P_{1}+\alpha_{2} P_{2}$
$Q_{s 2}=\beta_{0}+\beta_{1} P_{1}+\beta_{2} P_{2}$
(Model 4.1)
$a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=d_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=d_{2}$
$a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=d_{m}$
\#1 Rewrite the market model (3.1) in the format of (4.1), and show that, if the three variables are arranged in the order Q_{d}, Q_{s}, and P, the coefficient matrix will be

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & 0 & b \\
0 & 1 & -d
\end{array}\right]
$$

How would you write the vector of constants?
\#2 Rewrite the market model (3.12) in the format of (4.1) with the variables arranged in the following order: $Q_{d 1}, Q_{s 1}, Q_{d 2}, Q_{s 2}, P_{1}, P_{2}$. Write out the coefficient matrix, the variable vector, and the constant vector.

