Homework Day 1 Solutions - ECON 186

Problem 1. Chiang and Wainwright 2.3 # 3, 5

3)

- a) $\{2, 4, 6, 7\}$
- b) $\{2, 4, 6\}$
- c) $\{2, 6\}$
- d) $\{2\}$
- e) $\{2\}$
- f) $\{2, 4, 6\}$

5) First part: $A \cup (B \cap C) = \{4, 5, 6\} \cup \{3, 6\} = \{3, 4, 5, 6\}$; and $(A \cup B) \cap (A \cup C) = \{3, 4, 5, 6, 7\} \cap \{2, 3, 4, 5, 6\} = \{3, 4, 5, 6\}$ too.

Second part: $A \cap (B \cup C) = \{4, 5, 6\} \cap \{2, 3, 4, 6, 7\} = \{4, 6\}$; and $(A \cap B) \cup (A \cap C) = \{4, 6\} \cup \{6\} = \{4, 6\}$ too.

Problem 2. Chiang and Wainwright 2.4 #1, 6, 7

1)

a) $\{(3, a), (3, b), (6, a), (6, b), (9, a), (9, b)\}$

- b) $\{(a,m), (a,n), (b,m), (b,n)\}$
- c) $\{(m,3), (m,6), (m,9), (n,3), (n,6), (n,9)\}$

6) The range is the set of all nonpositive numbers.

7)

a) No

b) Yes

Problem 3. Chiang and Wainwright 3.2 #2

2)

- a) $P^* = \frac{61}{9}, Q^* = \frac{276}{9}$
- b) $P^* = \frac{36}{7}, Q^* = \frac{138}{7}$

Problem 4. Chiang and Wainwright 3.3 # 6

6)

a) The model reduces to $P^2 + 6P - 7 = 0$. By the quadratic formula, we have $P_1^* = 1$ and $P_2^* = 7$, but only the first root is acceptable. Substituting that root into the second or the third equation, we find $Q^* = 2$.

b) The model reduces to $2P^2 - 10 = 0$ or $P^2 = 5$ with the two roots $P_1^* = \sqrt{5}$ and $P_2^* = -\sqrt{5}$. Only the first root is admissible, and it yields $Q^* = 3$.

Problem 5. Chiang and Wainwright 4.1 #1, 2

1.

				Coeff	Coefficient Matrix:			Vector of Constants:		
Q_d	$-Q_s$		= 0	1	-1	0		0		
Q_d		+bP	= a	1	0	b		a		
	Q_s	-dP	= -c	0	1	-d		-c		

			Q_{d1}	$-Q_s$	1				= 0		
			Q_{d1}				$-a_1P_1$	$-a_2P_2$	$= a_0$		
				Q_{s1}			$-b_1P_1$	$-b_2P_2$	$= b_0$		
					Q_{d2}	$-Q_{s2}$			= 0		
					Q_{d2}		$-\alpha_1 P_1$	$-\alpha_2 P_2$	$= \alpha_{0}$		
						Q_{s2}	$-\beta_1 P_1$	$-\beta_2 P_2$	$=\beta_0$		
_	C	oeffi	cient n	natrix:	_	Variable vector:				Constant vector:	
					0		Q_{d1}			0	
1	0	0	0	$-a_1$	$-a_2$		Q_{s1}			a_{0}	
0	1	0	0	$-b_1$	$-b_2$		Q_{d2}			b_0	
0	0	1	-1	0	0		Q_{s2}			0	
0	0	1	0	$-\alpha_1$	$-\alpha_2$		P_1			α_0	
0	0	0	1	$-\beta_1$	$-\alpha_2$ $-\beta_2$		P_2			β_0	

2.