Homework Day 1 Solutions - ECON 186

Problem 1. Chiang and Wainwright $2.3 \# 3,5$
3)
a) $\{2,4,6,7\}$
b) $\{2,4,6\}$
c) $\{2,6\}$
d) $\{2\}$
e) $\{2\}$
f) $\{2,4,6\}$
5) First part: $A \cup(B \cap C)=\{4,5,6\} \cup\{3,6\}=\{3,4,5,6\}$; and $(A \cup B) \cap(A \cup C)=$ $\{3,4,5,6,7\} \cap\{2,3,4,5,6\}=\{3,4,5,6\}$ too.

Second part: $A \cap(B \cup C)=\{4,5,6\} \cap\{2,3,4,6,7\}=\{4,6\} ;$ and $(A \cap B) \cup(A \cap C)=$ $\{4,6\} \cup\{6\}=\{4,6\}$ too.

Problem 2. Chiang and Wainwright $2.4 \# 1,6,7$
1)
a) $\{(3, a),(3, b),(6, a),(6, b),(9, a),(9, b)\}$
b) $\{(a, m),(a, n),(b, m),(b, n)\}$
c) $\{(m, 3),(m, 6),(m, 9),(n, 3),(n, 6),(n, 9)\}$
6) The range is the set of all nonpositive numbers.
7)
a) No
b) Yes

Problem 3. Chiang and Wainwright 3.2 \#2
2)
a) $P^{*}=\frac{61}{9}, Q^{*}=\frac{276}{9}$
b) $P^{*}=\frac{36}{7}, Q^{*}=\frac{138}{7}$

Problem 4. Chiang and Wainwright 3.3 \#6
6)
a) The model reduces to $P^{2}+6 P-7=0$. By the quadratic formula, we have $P_{1}^{*}=1$ and $P_{2}^{*}=7$, but only the first root is acceptable. Substituting that root into the second or the third equation, we find $Q^{*}=2$.
b) The model reduces to $2 P^{2}-10=0$ or $P^{2}=5$ with the two roots $P_{1}^{*}=\sqrt{5}$ and $P_{2}^{*}=-\sqrt{5}$. Only the first root is admissible, and it yields $Q^{*}=3$.

Problem 5. Chiang and Wainwright $4.1 \# 1,2$
1.

$$
\begin{array}{llll}
& & & \\
Q_{d} & -Q_{s} & & =0 \\
Q_{d} & & +b P & =a \\
& Q_{s} & -d P & =-c
\end{array} \quad\left[\begin{array}{rrr}
\text { Coefficient Matrix: } \\
1 & -1 & 0 \\
1 & 0 & b \\
0 & 1 & -d
\end{array}\right] \quad\left[\quad\left[\begin{array}{r}
0 \\
a \\
-c
\end{array}\right]\right.
$$

2.

$$
\begin{aligned}
& Q_{d 1}-Q_{s 1} \quad=0 \\
& Q_{d 1} \quad-a_{1} P_{1} \quad-a_{2} P_{2} \quad=a_{0} \\
& \begin{array}{rlll}
Q_{s 1} & -b_{1} P_{1} & -b_{2} P_{2} & =b_{0} \\
Q_{d 2} \quad-Q_{s 2} & & =0
\end{array} \\
& Q_{d 2} \quad-\alpha_{1} P_{1} \quad-\alpha_{2} P_{2} \quad=\alpha_{0} \\
& Q_{s 2} \quad-\beta_{1} P_{1} \quad-\beta_{2} P_{2} \quad=\beta_{0} \\
& {\left[\right]\left[\begin{array}{l}
0 \\
a_{0} \\
b_{0} \\
0 \\
\alpha_{1} \\
\alpha_{0} \\
\beta_{0}
\end{array}\right]}
\end{aligned}
$$

